Evaluating Clinical Accuracy of Systems for Self-Monitoring of Blood Glucose

  1. Stephen L Pohl, MD
  1. Departments of Pediatrics, Behavioral Medicine and Psychiatry, and Internal Medicine, and the Diabetes Research and Training Center, University of Virginia Medical School Charlottesville, Virginia
  1. Address correspondence and reprint requests to William L. Clarke, MD, Box 386, Department of Pediatrics, University of Virginia Medical School, Charlottesville, VA 22908.

Abstract

Although the scientific literature contains numerous reports of the statistical accuracy of systems for self-monitoring of blood glucose (SMBG), most of these studies determine accuracy in ways that may not be clinically useful. We have developed an error grid analysis (EGA), which describes the clinical accuracy of SMBG systems over the entire range of blood glucose values, taking into account 1) the absolute value of the system-generated glucose value, 2) the absolute value of the reference blood glucose value, 3) the relative difference between these two values, and 4) the clinical significance of this difference. The EGA of accuracy of five different reflectance meters (Eyetone, Dextrometer, Glucometer I, Glucometer II, Memory Glucometer II), a visually interpretable glucose reagent strip (Glucostix), and filter-paper spot glucose determinations is presented. In addition, reanalyses of a laboratory comparison of three reflectance meters (Accucheck II, Glucometer II, Glucoscan 9000) and of two previously published studies comparing the accuracy of five different reflectance meters with EGA is described. EGA provides the practitioner and the researcher with a clinically meaningful method for evaluating the accuracy of blood glucose values generated with various monitoring systems and for analyzing the clinical implications of previously published data.

| Table of Contents