Sleep Duration as a Risk Factor for the Development of Type 2 Diabetes

  1. H. Klar Yaggi, MD, MPH12,
  2. Andre B. Araujo, PHD3 and
  3. John B. McKinlay, PHD3
  1. 1Yale University School of Medicine, New Haven, Connecticut
  2. 2VA Connecticut Health Care System, West Haven, Connecticut
  3. 3New England Research Institutes, Watertown, Massachusetts
  1. Address correspondence and reprint requests to H. Klar Yaggi, MD, MPH, 300 Cedar St., TAC 441, P.O. Box 208057, New Haven, CT 06520-8057. E-mail: henry.yaggi{at}yale.edu

Abstract

OBJECTIVE—Short-term partial sleep restriction results in glucose intolerance and insulin resistance. The purpose of this study was to assess the long-term relationship between sleep duration and the incidence of clinical diabetes.

RESEARCH DESIGN AND METHODS—A cohort of men from the Massachusetts Male Aging Study without diabetes at baseline (1987–1989) were followed until 2004 for the development of diabetes. Average number of hours of sleep per night was grouped into the following categories: ≤5, 6, 7, 8, and >8 h. Incidence rates and relative risks (RRs) were calculated for the development of diabetes in each sleep duration category. Those reporting 7 h of sleep per night served as the reference group. Multivariate analysis was performed using Poisson regression.

RESULTS—Men reporting short sleep duration (≤5 and 6 h of sleep per night) were twice as likely to develop diabetes, and men reporting long sleep duration (>8 h of sleep per night) were more than three times as likely to develop diabetes over the period of follow-up. Elevated risks remained essentially unchanged after adjustment for age, hypertension, smoking status, self-rated health status, education, and waist circumference (RR 1.95 [95% CI 0.95–4.01] for ≤5 h and 3.12 [1.53–6.37] for >8 h). RRs were altered considerably for the two extreme sleep groups when adjusted for testosterone (1.51 [0.71–3.19] for ≤5 h and 2.81 [1.34–5.90] for >8 h), suggesting that the effects of sleep on diabetes could be mediated via changes in endogenous testosterone levels.

CONCLUSIONS—Short and long sleep durations increase the risk of developing diabetes, independent of confounding factors. Sleep duration may represent a novel risk factor for diabetes.

Footnotes

  • A table elsewhere in this issue shows conventional and Système International (SI) units and conversion factors for many substances.

    The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked “advertisement” in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

    • Accepted November 23, 2005.
    • Received May 16, 2005.
| Table of Contents