Short Sleep Duration Is Associated With a Blood Pressure Nondipping Pattern in Type 1 Diabetes

The DIAPASOM study

OBJECTIVE — To assess whether nocturnal blood pressure dipping status in type 1 diabetes is correlated with specific sleep characteristics and differences in nocturnal glycemic profiles.

RESEARCH DESIGN AND METHODS — Twenty type 1 diabetic adult patients underwent sleep studies with simultaneous 24-h ambulatory blood pressure monitoring and continuous nocturnal glucose monitoring.

RESULTS — Altogether, 55% of patients exhibited blunted blood pressure dipping. They did not differ from the dipper group in age, BMI, or systolic (SBP) and diastolic (DBP) blood pressure. Total sleep period (TSP) was higher in the dipper group (497 ± 30 vs. 407 ± 44 min for dippers and nondippers, respectively, \(P < 0.001 \)). TSP was correlated with SBP and DBP day-night differences (\(r = 0.44 \) and 0.49, respectively). Periods of nocturnal hypoglycemia (i.e., % of TSP with glycaemia <70 mg/dl) were longer in the dipper group (81 ± 10.7 vs. 0.1 ± 0.4% for dippers and nondippers, respectively, \(P = 0.02 \)).

CONCLUSIONS — Dipping status in type 1 diabetes was associated with longer sleep duration and with hypoglycemia unawareness.

From the 1Endocrinology Department, University Hospital, Po ̈le Digidune, Joseph Fourier University, Grenoble, France; the 2Cardiology Department, University Hospital, Bioclinic Radiopharmaceutics Laboratory, INSERM U877, Joseph Fourier University, Grenoble, France; the 3Rehabilitation and Physiology Department, University Hospital, INSERM ERI 17, Espri EA 3745, Joseph Fourier University, Grenoble, France; and the 4Cardiology Department, University Hospital, Joseph Fourier University, Grenoble, France.

Corresponding author: Anne-Laure Borel, alborel@chu-grenoble.fr.

Received 4 March 2009 and accepted 5 June 2009.

Statistical analysis

Variables were described by mean and SD or by frequency distribution. Normality was assessed by skewness and kurtosis tests. Comparisons were made using Student’s t or Mann-Whitney tests, depend-
Sleep duration and blood pressure in type 1 diabetes

Figure 1—Sleep characteristics related to BP dipping status. Left: TST and sleep architecture in dipper and nondipper type 1 diabetic patients. TST was shorter in nondipper subjects. TST data are mean ± SD. *P < 0.05. Right: Positive correlation between TSP and day-night SBP differences.

Nocturnal hypoglycemia was more frequent among dipper subjects (8.1 ± 10.7 and 0.1 ± 0.4% of sleep time spent in hypoglycemia for dippers and nondippers, respectively, P = 0.02). DQOL was significantly impaired in nondipper subjects only for the treatment satisfaction item (82.2 ± 13.5 vs. 63.7 ± 19.3 for dippers and nondippers, respectively, P = 0.03).

Nocturnal mean HR was negatively correlated with TSP (r = −0.53), TST (r = −0.44), and time spent in hypoglycemia (r = −0.56).

CONCLUSIONS — Sleep recordings, BP measurements, and continuous glucose monitoring were used together in type 1 diabetic patients. Such a complexity explains the relatively limited sample of patients included. Polysomnography allowed for objectively defining the beginning and end of sleep and then an appropriate classification for dippers and nondippers (11).

To our knowledge, no study has explored the potential link between abnormal nocturnal BP pattern and altered sleep quality in type 1 diabetes. In our work, shorter sleep duration explained 19–24% of the decrease in day-night BP difference (r² = 0.19 and 0.24 for SBP and DBP, respectively) and 28% of the increase in HR (r² = 0.28). Outside the scope of type 1 diabetes, general population studies have demonstrated that short sleep duration habits were associated with increased risk of developing hypertension (12).

We found a high prevalence of sleep apnea among our type 1 diabetic subjects. Although sleep apnea is clearly related to nondipping BP pattern (13), it was not an independent explaining factor for nondipping in our population.

Hypoglycemia unawareness during the night in type 1 diabetic patients is a major concern in disease management. Indeed, convulsions, neurologic aftereffects, and “dead-in-bed” syndrome have been reported in this condition (14). Subjects fail to awake when hypoglycemia occurs at night, in relation with blunted counterregulatory epinephrine level (5). Other studies suggest that unperceived hypoglycemia occurred in patients with more efficient and more stage 3–4 sleep, without sympathetic activation (15).

Our study suggests that assessing sleep duration is fully relevant in clinical practice. BP nondipping status should receive particular attention in type 1 diabetic patients with short sleep duration, and hypoglycemia unawareness deserves careful prevention in patients with longer and more stable sleep.

Acknowledgments — We thank the Direction de la Recherche Clinique of Grenoble University Hospital for the financial contribution that funded this study.

No potential conflicts of interest relevant to this article were reported.

Nathalie Arnol, Helene Pierre, and Sandrine Mourat, clinical research assistants and statistical specialists, greatly contributed to this work.

References

