OBSERVATIONS

Improvement of Insulin Sensitivity After Adrenalectomy in Patients With Pheochromocytoma

Impaired glucose tolerance is frequent in patients with pheochromocytoma (1). A decreased insulin secretion is considered to be the main cause for pheochromocytoma-associated diabetes (2). Data from animal and circumstantial evidence from clinical studies suggest that catecholamines can induce insulin resistance. Previous studies characterized the glucose metabolism in patients with pheochromocytoma by fasting blood glucose levels (3), an intravenous insulin test (4), or an oral glucose tolerance test (OGTT) with corresponding insulin levels (1,5) before and after surgery. These studies primarily investigated the changes of insulin secretion and did not calculate the whole-body insulin sensitivity from euglycemic clamps. In animal studies, epinephrine was shown to induce insulin resistance in rat muscle (6). There is further evidence from clinical studies that insulin resistance can be induced by catecholamines via β-adrenergic stimulation (7) or epinephrine (8). Therefore, it is very likely that catecholamine excess in patients with pheochromocytoma can induce insulin resistance. Hence, we investigated the extent of insulin resistance by means of the euglycemic-hyperinsulinemic clamp technique (9) in three patients (two women and one man) with pheochromocytoma and diabetes before and 5 weeks after adrenalectomy. To exclude glucose toxicity-induced insulin resistance, clamps were performed 2 weeks after normalization of hyperglycemia.

All of the patients had a history of sustained hypertension, and one patient had a history of paroxysmal hypertension. The two women had a family history of type 2 diabetes and required insulin therapy before surgery; the man (no family history of diabetes) was treated with metformin before surgery. In each proband, whole-body glucose uptake (means ± SEM) significantly improved from 23.4 ± 4.1 before surgery to 36.2 ± 7.7 µmol·kg⁻¹·min⁻¹ 5 weeks after the adrenalectomy.

The improved insulin sensitivity after surgery was confirmed in all of the subjects by a decrease in fasting hyperinsulinemia from 163 ± 19 before surgery to 102 ± 21 pmol/l after surgery. In contrast to previous studies, no inhibitory effect on fasting insulin secretion by high catecholamine levels was detected. In one patient, diabetes and hyperinsulinemia were reversed by the removal of the tumor. In the other two subjects, type 2 diabetes was known for >6 years and treated with insulin 2 and 3 years before the diagnosis of pheochromocytoma. Although diabetes was not reversible in these two patients, insulin treatment could be converted into oral antidiabetic treatment in one patient, and the daily insulin dose could be significantly reduced in the other patient. There was no change in BMI or the concentrations of free fatty acids, triglycerides, and total, LDL, and HDL cholesterol after surgery compared with before surgery. Normalization of the 24-h urinary excretion of catecholamines after surgery was achieved in each of the patients. No patient took any drug that influenced the high-performance liquid chromatography analysis of the catecholamines.

Previous studies showed an improvement of glucose metabolism as determined by fasting (3) or 2-h OGTT plasma glucose levels (1,5) after adrenalectomy in patients with pheochromocytoma. Because these studies (1,5) concentrated only on the assessment of insulin-secretory defects in patients with pheochromocytoma, the catecholamine-induced impaired glucose tolerance was explained by the detected decrease in the insulin secretion response during the OGTT (1). Although β-receptor stimulation (catecholamines) can induce insulin resistance, as suggested by animal (6) and clinical studies (4,7,8), these studies did not investigate whether the improvement in glucose homeostasis after surgery is also the result of an improvement in insulin action.

The threshold for insulin sensitivity (i.e., a normalization of whole-body glucose uptake determined by the euglycemic clamp) was only achieved in the male patient. In this patient, the insulin treatment could be stopped. Therefore, it is likely that, in this patient only, diabetes was induced by the high catecholamine plasma concentrations. In the two female patients, insulin resistance was most likely only exacerbated by the high catecholamine levels. Furthermore, in contrast to the male patient, the female patients had a family history of type 2 diabetes. In addition to insulin resistance, improvement of hyperinsulinemia could also be due to an insulin secretion-stimulating effect of catecholamines in these patients. Thus, in contrast to the previous findings indicating that reduced insulin secretion is the main cause for impaired glucose tolerance in pheochromocytoma (1,5). In our patients, impaired glucose metabolism was induced (in the male patient) or exacerbated (in the two female patients) by insulin resistance induced by catecholamine excess. Moreover, in contrast to these studies (1,5), even in the male patient with catecholamine-induced mildly impaired glucose tolerance, we observed a postoperative increase of insulin secretion.

In conclusion, in the three patients with pheochromocytoma and diabetes, catecholamine overproduction led to increased insulin resistance. Insulin sensitivity improved after complete adrenalectomy. The previously described inhibitory effect of catecholamine excess on fasting insulin secretion was not detected in these patients.

MICHAEL BLÜHER, MD
MATTHIAS WINDGASSEN, MD
RALF PASCHKE, MD

From the Medical Department, University of Leipzig, Leipzig, Germany.
Address correspondence to R. Paschke, MD, University of Leipzig, III. Medical Department, Philipp-Rosenthal-Straße 27, D-04103 Leipzig, Germany. E-mail: pas@medizin3.uni-leipzig.de

References
Letters

A 56-year-old woman was admitted to the hospital complaining of mild left hypochondralgia radiating to the back. She had no manifestations of sicca syndrome and no history of pancreatitis or alcohol consumption. Her family history was not contributory. Her BMI was 23.2 kg/m², and her eosinophils were increased to 528/µl. The patient's total serum bilirubin, serum aspartate aminotransferase, alkaline phosphatase, y-glutamyl transpeptidase, serum amylase, lipase, elastase-1, and C-reactive protein levels were normal. Serum y-globulin was elevated to 1.63 g/dl and IgG was elevated to 2,000 mg/dl (normal range 800–1,600). The patient tested negative for antinuclear antibody.

The pancreatic exocrine and endocrine functions were as follows: The bentiromide test value was 50.9% (73.1–90.1), showing exocrine dysfunction. Fasting plasma glucose was 141 mg/dl and plasma glucose after breakfast was 395 mg/dl. She required insulin for control. HbA1c was 5.6% (3.0–6.0). The patient's fasting immunoreactive insulin was 1.9 µU/ml and fasting C-peptide was 0.3 ng/ml. Urinary C-peptide excretion was 22 µg/day. The increment of serum C-peptide in response to intravenous administration of 1 mg glucagon was 0.2 ng/ml, indicating severe impairment of insulin secretion. The patient was positive for islet cell antibody (ICA). IA-2 antibody was positive at 2.7 U/ml (cutoff <0.4) measured by radioimmunoassay kit (RSR, Ltd., Cardiff, Wales, U.K., provided by Cosmic Corp., Tokyo). Anti-GAD antibody was negative. Anti-microsome antibody and anti-thyroglobulin antibody were positive at 1:400 and 1:100 titer for each. The patient possessed HLA-DR4 (DRB1*04051) and DQB1 0401, the major HLA types in type 1 diabetes in Japanese people (8). Other HLA types found in this case subject were A2, B61, B67, CW7, DRB1*1201, and DOB1*0301. IgM antibodies to cytomegalovirus, Epstein-Barr virus, rubella virus, and mumps virus (measured by enzyme-linked immunosorbent assay), and antibody to Coxsackie B4 virus (measured by complement fixation method) were all negative.

Abdominal ultrasonography showed diffuse hypoechoic swelling of the pancreas. Computed tomography (CT) with enhancement demonstrated swelling of the pancreas (Fig. 1). Endoscopic retrograde cholangiography and pancreatography showed a diffuse narrowing and irregularity of the main pancreatic duct and mild smooth stenosis of the common bile duct (Fig. 2).

Because autoimmune pancreatitis was strongly suggested, corticosteroid administration was initiated. Prednisolone (30 mg/day) was administered and the dose was tapered. One month after the steroid treatment was started, the swelling of the pancreas improved to normal size (Fig. 3), and the bentiromide test value improved to 71.2%. However, insulin secretion was

Association of Autoimmune Pancreatitis and Type 1 Diabetes

Autoimmune exocrinopathy and endocrinopathy of the pancreas

Autoimmune pancreatitis is a recently described clinical entity characterized by diffuse or focal swelling of the pancreas, irregular narrowing of the main pancreatic duct on endoscopic retrograde pancreatography, hypergammaglobulinemia, eosinophilia, the presence of autoantibodies, fibrosis, and lymphocyte infiltration in the exocrine pancreas, together with a responsiveness to corticosteroid therapy (1–3). It has been suggested that carbonic anhydrase II, an antigen of duct cells of the pancreas, or lactoferrin in the pancreatic acinus may be the candidates for the target antigen, although there is the possibility of other candidates (4). It has been reported that this disease is sometimes associated with autoimmune diseases such as Sjögren's syndrome, primary sclerosing cholangitis, primary biliary cirrhosis, autoimmune hepatitis, and immune thrombocytopenia (5,6). On the other hand, it is well known that an autoimmune mechanism is involved in the pathogenesis of type 1A (immune-mediated) diabetes (7). Here we report, for the first time, an association of autoimmune pancreatitis and type 1A diabetes.

Figure 1—CT on admission. Diffuse swelling of the pancreas can be seen.
not restored; the C-peptide response to a glucagon test after treatment was 0.1 ng/ml. The basal plasma glucagon level was 94 pg/ml, and the increment of plasma glucagon after intravenous infusion of 30 g arginine hydrochlorate in 30 min was 228 pg/ml, suggesting that α-cell function was preserved. The patient is being treated as an outpatient with 5 mg/day prednisolone and multiple insulin injections.

Ito et al. (2) reported cases of diabetes that occurred at the same time as autoimmune pancreatitis and were improved by steroid treatment. We also have experienced cases of diabetes associated with autoimmune pancreatitis that improved after steroid treatment (6). In those cases, the ICA and anti-GAD antibody were negative. In contrast, the present case subject was positive for ICA and IA-2 antibody, which are good markers of type 1A diabetes (7,9). Despite the severe impairment of insulin secretion, glucagon secretion was preserved. This finding is uncharacteristic of diabetes secondary to chronic pancreatitis, in which α-cell function is also impaired in the stage when β-cell function is severely impaired (10). Thus, this case was diagnosed as an association of type 1A diabetes and autoimmune pancreatitis. Because the patient's HbA1c on admission was normal, the clinical presentation of type 1A diabetes and autoimmune pancreatitis seems simultaneous. The reason the impaired insulin secretion was not restored while the exocrine function improved after steroid treatment may be that β-cell damage had progressed to an irreversible stage.

This association of autoimmune pancreatitis and type 1A diabetes may suggest common factors in the etiopathogenesis of both diseases, although the mechanism remains to be elucidated. Another possibility is that local disturbance of immunobalance associated with autoimmune pancreatitis triggered the immune mechanism of type 1A diabetes in the patient bearing the susceptible HLA. Involvement of known viruses that have affinity for the pancreas was not found.

In conclusion, we reported the first case of association of autoimmune pancreatitis and type 1A diabetes; namely, autoimmune exocrinopathy and endocrinopathy of the pancreas.

These conditions may characterize a novel subtype of type 1A diabetes, although further studies are required to confirm this hypothesis.

Takao Taniguchi, MD, PhD
Shuji Seko, MD, PhD
Motozumi Okamoto, MD, PhD
Akihiro Hamasaki, MD
Hiroyuki Ueno, MD
Fumihiro Inoue, MD
Osamu Nishida, MD, PhD
Naoki Miyake, MD, PhD
Takashi Mizumoto, MD, PhD

From the Department of Internal Medicine, Ohtsu Red Cross Hospital, Ohtsu, Shiga, Japan.

Address correspondence to Takao Taniguchi, MD, PhD, Department of Internal Medicine, Ohtsu Red Cross Hospital, 1-1-35, Nagara, Ohtsu, Shiga, Japan.

References
2. Ito T, Nakano I, Koyanagi S, Miyahara T, Migita Y, Ogoshi K, Sakai H, Matsunaga S,
Use of Sibutramine Hydrochloride Monohydrate in the Treatment of the Painful Peripheral Neuropathy of Diabetes

When amitriptyline was first shown to help some patients with the painful peripheral neuropathy of diabetes, it was unknown exactly how the medication worked (1). Max et al. (2) then showed that the most likely mechanism involved was through the central nervous system metabolism of norepinephrine. This finding led to the successful trial of extended-release venlafaxine (3,4), an antidepressant that inhibits the uptake of norepinephrine among other centrally acting monoamines. Because type 2 diabetes is often associated with obesity and the weight-loss drug sibutramine hydrochloride monohydrate is associated with the blockage of reuptake of norepinephrine in the central nervous system (5), this agent was tried in the treatment of the painful peripheral neuropathy seen in diabetes.

A 58-year-old woman with a 10-year history of type 2 diabetes and lifelong obesity (BMI 45.5 kg/m²) presented with poorly controlled diabetes and an HbA₁c level of 7.9%. At the time, she was taking metformin and NPH insulin twice a day. Initially, her treatment consisted of weight loss (7 lb.) and discontinuation of insulin use, and over a period of months her HbA₁c level dropped to 6.6%. She then developed burning paresthesias of both distal lower extremities. A physical examination revealed that she had absent deep tendon reflexes in the Achilles’ tendon and decreased sensation to pinprick and vibratory sense of the feet. She had no history of alcohol or drug abuse. She was started on 15 mg sibutramine daily. In less than 1 week, she had 90% relief of the pain in her feet. The pain recurred when she stopped taking the medicine and was promptly relieved when 10 mg per day was restarted and continued to the present time. The patient had no increase in blood pressure or pulse; however, she also experienced no further weight loss.

These findings led to the trial of sibutramine 15 mg per day in eight other type 2 diabetic patients who had painful neuropathy. All of the patients were obese women. They had had known diabetes from 1 to 29 years and all were on various oral agents with varying degrees of control. The length of pain symptoms had been from a few weeks to 3 years.

All patients responded to the medication with a 50–100% reduction in pain (average 75%). The response occurred usually within 1 week of starting the medication. Because of the expense of the medication, all of the patients stopped the medicine with the recurrence of pain. Two patients restarted the medicine again, with prompt relief. The other six were treated with various other medications in an attempt to relieve their discomfort.

Both the Diabetes Control and Complications Trial (6) and the U. K. Prospective Diabetes Study Group (7) have shown that decreasing an individual’s mean blood sugar level can decrease the onset and progression of diabetic neuropathy. Weight loss alone can also lead to a decrease in the mean blood sugar level, possibly preventing or delaying the onset of the painful peripheral neuropathy seen in some diabetic patients. Sibutramine hydrochloride monohydrate seems to be an ideal method of treatment in obese type 2 diabetic patients with painful neuropathy.

In these case reports, the medication seems to relieve the discomfort. However, because of the expense of the drug, because no third-party payer would help compensate for the medication, and because no patient was in a dedicated weight loss program, the medication was not continued in the majority of the patients and weight loss was not achieved.

This observation suggests that sibutramine hydrochloride monohydrate combined with a structured weight loss program may help relieve the pain of diabetic neuropathy and eventually achieve weight loss in the obese diabetic patient.

JONATHAN L. DAVIS, MD

Address correspondence to Jonathan L. Davis, MD, 1704 Turleecreek Rd., Edmond, OK 73013. E-mail: jldavis216@aol.com.

Acknowledgments — The author wishes to thank Dr. Steven Joyal of Knoll Pharmaceutical Company for the samples of sibutramine hydrochloride monohydrate used in this study

References
6. The Diabetes Control and Complications Trial Research Group: The effect of intensive treatment of diabetes on the develop-
COMMENT AND RESPONSES

Insulin Sensitivity Indexes Calculated From Oral Glucose Tolerance Test Data

In the article by Matsuda and DeFronzo on this issue (1), the authors proposed a formula to calculate the insulin sensitivity index (ISI) from oral glucose tolerance test (OGTT) data and compared their formula with a formula previously published by us (2,3). Unfortunately, a mistake was made in reporting our formula. We described our formulas (2), which calculate the ISI for glycemia [ISI(gly)] and free fatty acids (FFAs) [ISI(ffa)], as follows:

\[
\text{ISI(gly)} = \frac{2}{(\text{INSp} \times \text{GLYp}) + 1}, \\
\text{ISI(ffa)} = \frac{2}{(\text{INSp} \times \text{FFAp}) + 1},
\]

where INSp, GLYp, and FFAp are insulinemic, glycemic, and FFA areas, respectively, during an OGTT. Areas (only baseline, 1-h, and 2-h samplings) were expressed by taking the mean normal value as unit (i.e., by dividing the value of insulin, glycemia, and FFA areas of the study subjects by the mean normal values of these parameters), so that, in normal subjects, ISI(gly) and ISI(ffa) were always \(-1\), with maximal variations among patients between 0 and 2.

In contrast to our description, Matsuda and DeFronzo calculated the (INSp \times GLYp) in our formula by multiplying insulin and glycemia (mean values during an OGTT, rather than areas) by each other and then dividing the result by an undefined “constant.” The difference is substantial. In fact, in 72 subjects, we found that the correctly calculated ISI(gly) in normal subjects was close to 1 (as expected), and the minimal value among obese patients with impaired glucose tolerance was 0.18. According to our formula as altered by Matsuda and DeFronzo, when a low constant (25% of the mean normal insulin value) was used, the ISI(gly) normal value was 0.08, and the minimal value among patients was 0.01, whereas by using a high constant (fourfold the mean normal value of glucose), the mean and minimal values were 1.88 and 1.61. Clearly, these narrow ranges of values and their dependence on the constant would make the test of little clinical significance. Correlation with several parameters (BMI, waist circumference, etc.) is also affected and is higher when high constants are used. But which constant is used by Matsuda and DeFronzo? I would be grateful if these authors would repeat their calculation according to the formula published by us.

Unlike our original formula, the altered formula yields results that are linked to the units used to express insulin and glucose. This effect is also true for the formula of Matsuda and DeFronzo, who expressed glucose and insulin as milligrams per decaliter and microunits per milliliter, respectively. In fact, the ISI in their normal group would change from ~3.75 to ~67.42 if glucose was expressed in millimoles per liter.

Finally, correlation between the euglycemic insulin clamp and an OGTT-derived ISI may not be meaningful, because the two tests have different significance. The former is performed under reproducible but artificial conditions (sustained hyperinsulinemia, suppression of FFA, etc.) and measures glucose utilization by tissues. The latter is performed under rather physiological conditions, with hormonal and metabolic variables unmodified, and measures the whole-body clinical parameters of insulin action (i.e., the insulin effect on blood glucose and FFA).

FRANCESCO BELFIORE, MD

From the Institute of Internal Medicine, Ospedale Garibaldi, University of Catania, Catania, Italy.

Address correspondence to Francesco Belfiore, MD, Institute of Internal Medicine, University of Catania, Ospedale Garibaldi, 95123 Catania, Italy. E-mail: francesco.belfiore@iol.it.

References

Response to Belfiore

In our article (1), the constant (C) represents the product of the mean plasma glucose concentration multiplied by the mean plasma insulin concentration in normal healthy subjects. Thus, as described in the original article by Belfiore et al. (2), we divided the product of the mean plasma glucose and insulin concentrations in the impaired glucose tolerant and diabetic subjects by the product of the mean plasma glucose and insulin concentrations in the normal healthy subjects. To calculate the mean plasma glucose and insulin concentrations, we first calculated the area under the curve for insulin and glucose and divided by 120 min (the length of the oral glucose tolerance test [OGTT]). Therefore, whether one uses the product of the area under the plasma insulin and glucose concentration curves or the product of the mean plasma glucose and mean plasma insulin concentrations, one obtains the same values that are presented in our article. The mean insulin sensitivity value calculated in the 62 normal subjects in our article was 1.0 (range 0.4–1.6). The “normal values” cited in Belfiore’s letter (3) for “low” and “high” constants have no relevance to the calculations used in our article, and it is unclear to us how or why these low and high constant values were selected.

The euglycemic insulin clamp is widely acknowledged to represent the gold standard for measuring insulin sensitivity in vivo and is based on sound physiological principles. During the procedure, plasma glucose and insulin concentrations are clamped, and the glucose infusion rate (plus any residual endogenous glucose production) equals the rate of insulin-mediated glucose disposal by all tissues in the body. In contrast, during the OGTT, both plasma glucose and insulin concentrations are simultaneously and rapidly changing, and steady-state conditions are never achieved. Consequently, it is difficult to draw any conclusions about either insulin sensitivity or insulin secretion during the OGTT. Our article represents the first attempt to derive an index of insulin sensitivity from the OGTT and to validate the derived index by comparing it with the directly measured rate of insulin-mediated glucose disposal.
During a euglycemic insulin clamp performed in the same subject.

We agree with Belfiore that any test that restrains the plasma glucose and insulin concentrations from changing is nonphysiological. However, unless these variables are clamped, it is impossible to obtain a direct measure of insulin-mediated glucose disposal. It should be pointed out that in every day life most individuals ingest mixed meals. Therefore, the ingestion of 75 g glucose also can hardly be considered to be physiological. Moreover, the hormonal (insulin) and metabolic (glucose) variables during the OGTT are not unmodified, but are constantly changing, making it impossible to derive a direct measure of insulin sensitivity. Because the plasma glucose concentration increases after glucose ingestion, one also has the compounding variable of insulin resistance. Because the plasma glucose concentration increases after glucose ingestion, which was evident by an improved level of HbA1c. In addition, Purnell et al. (4) showed that, compared with the subjects in the conventionally treated group (n = 680), those subjects receiving intensive diabetes therapy (n = 667) had a more favorable distribution of cholesterol.

It is a well-known fact that alcohol intake is associated with a significant elevation of both triglyceride and HDL cholesterol levels (2,5), as well as depression. We wonder what the outcome of this study would have been if alcohol had been included as a confounding factor. If the patients in this study had been consuming alcohol on a regular basis, the study findings could then be explained on this basis alone.

Typ 2 diabetic patients often have quantitative changes in plasma lipid profiles, which are characterized by higher triglyceride and lower HDL cholesterol levels than the average population (2,6).

Scoppola et al. (3) showed that total cholesterol, LDL cholesterol, and triglycerides decreased by 9, 8, and 12%, respectively, after blood glucose optimization, which was evident by an improved level of HbA1c. We agree with Belfiore that any test that utilizes glucose also can hardly be considered to be physiological. Moreover, the hormonal (insulin) and metabolic (glucose) variables during the OGTT are not unmodified, but are constantly changing, making it impossible to derive a direct measure of insulin sensitivity. Because the plasma glucose concentration increases after glucose ingestion, which was evident by an improved level of HbA1c. In addition, Purnell et al. (4) showed that, compared with the subjects in the conventionally treated group (n = 680), those subjects receiving intensive diabetes therapy (n = 667) had a more favorable distribution of cholesterol.

It is a well-known fact that alcohol intake is associated with a significant elevation of both triglyceride and HDL cholesterol levels (2,5), as well as depression. We wonder what the outcome of this study would have been if alcohol had been included as a confounding factor. If the patients in this study had been consuming alcohol on a regular basis, the study findings could then be explained on this basis alone.

Shakai U. Rehman, MD
Ambreen Shakaib, MBBS
Shaukat Rashid, MD

From the Diabetes Division, University of Texas Health Science Center, San Antonio, Texas. Address correspondence to Shakai U. Rehman, MD, 1850 Ashley Crossing Ln., #10-D, Charleston, SC 29414. E-mail: shakmd@hotmail.com.

Response to Rehman et al.

We would like to thank Rehman et al. (1) for their thoughtful comments regarding our article (2). In general, it is well documented that older African-American women do not have a high occurrence of alcohol use (3–5). Our population was 76% female. Nevertheless, we did examine alcohol use in our baseline assessment. Only 19 individuals (10% of the population) reported drinking alcohol in the month before the visit. Of the 18 individuals who responded to the CAGE (cut down, annoyed by criticism, guilty about drinking, and eye-opening drinks) questionnaire (6), only 7 individuals scored ≥2, indicating suspicion of alcoholism.

To assess the possibility of alcohol use as a potential confounder, we examined both the mean Center for Epidemiologic Studies Depression Scale (CES-D) depressive symptom score and the mean level of each lipid outcome, stratified by alcohol use in the past month versus no alcohol use. No statistically significant differences were shown between alcohol status and the main independent variable, CES-D depressive symptom score. Likewise, no statistically significant differences were shown for total cholesterol, HDL cholesterol, LDL cholesterol, or triglyceride levels by alcohol status.
In the linear regression models presented in the article, we examined the relationship between depressive symptoms and each lipid outcome (total cholesterol, HDL cholesterol, LDL cholesterol, triglyceride levels) adjusted for age, sex, income, social support, and duration of diabetes. In response to the letter, we also conducted this analysis including alcohol use in the past month as a covariate. A statistically significant trend between depressive symptoms and total cholesterol (P = 0.026), HDL cholesterol (P = 0.047), and triglyceride (P = 0.041) levels persisted after adjustment for alcohol use. Similarly, the marginally significant relationship between depressive symptoms and LDL cholesterol was virtually unchanged after adjustment for alcohol use. Similarly, the marginally significant relationship between depressive symptoms and total cholesterol (P = 0.047), and triglyceride (P = 0.041) levels persisted after adjustment for alcohol use. Similarly, the marginally significant relationship between depressive symptoms and total cholesterol (P = 0.047), and triglyceride (P = 0.041) levels persisted after adjustment for alcohol use. Similarly, the marginally significant relationship between depressive symptoms and total cholesterol (P = 0.047), and triglyceride (P = 0.041) levels persisted after adjustment for alcohol use. Similarly, the marginally significant relationship between depressive symptoms and total cholesterol (P = 0.047), and triglyceride (P = 0.041) levels persisted after adjustment for alcohol use. Similarly, the marginally significant relationship between depressive symptoms and total cholesterol (P = 0.047), and triglyceride (P = 0.041) levels persisted after adjustment for alcohol use. Similarly, the marginally significant relationship between depressive symptoms and total cholesterol (P = 0.047), and triglyceride (P = 0.041) levels persisted after adjustment for alcohol use. Similarly, the marginally significant relationship between depressive symptoms and total cholesterol (P = 0.047), and triglyceride (P = 0.041) levels persisted after adjustment for alcohol use. Similarly, the marginally significant relationship between depressive symptoms and total cholesterol (P = 0.047), and triglyceride (P = 0.041) levels persisted after adjustment for alcohol use. Similarly, the marginally significant relationship between depressive symptoms and total cholesterol (P = 0.047), and triglyceride (P = 0.041) levels persisted after adjustment for alcohol use. Similarly, the marginally significant relationship between depressive symptoms and total cholesterol (P = 0.047), and triglyceride (P = 0.041) levels persisted after adjustment for alcohol use. Similarly, the marginally significant relationship between depressive symptoms and total cholesterol (P = 0.047), and triglyceride (P = 0.041) levels persisted after adjustment for alcohol use. Similarly, the marginally significant relationship between depressive symptoms and total cholesterol (P = 0.047), and triglyceride (P = 0.041) levels persisted after adjustment for alcohol use. Similarly, the marginally significant relationship between depressive symptoms and total cholesterol (P = 0.047), and triglyceride (P = 0.041) levels persisted after adjustment for alcohol use. Similarly, the marginally significant relationship between depressive symptoms and total cholesterol (P = 0.047), and triglyceride (P = 0.041) levels persisted after adjustment for alcohol use. Similarly, the marginally significant relationship between depressive symptoms and total cholesterol (P = 0.047), and triglyceride (P = 0.041) levels persisted after adjustment for alcohol use. Similarly, the marginally significant relationship between depressive symptoms and total cholesterol (P = 0.047), and triglyceride (P = 0.041) levels persisted after adjustment for alcohol use. Similarly, the marginally significant relationship between depressive symptoms and total cholesterol (P = 0.047), and triglyceride (P = 0.041) levels persisted after adjustment for alcohol use. Similarly, the marginally significant relationship between depressive symptoms and total cholesterol (P = 0.047), and triglyceride (P = 0.041) levels persisted after adjustment for alcohol use. Similarly, the marginally significant relationship between depressive symptoms and total cholesterol (P = 0.047), and triglyceride (P = 0.041) levels persisted after adjustment for alcohol use. Similarly, the marginally significant relationship between depressive symptoms and total cholesterol (P = 0.047), and triglyceride (P = 0.041) levels persisted after adjustment for alcohol use. Similarly, the marginally significant relationship between depressive symptoms and total cholesterol (P = 0.047), and triglyceride (P = 0.041) levels persisted after adjustment for alcohol use. Similarly, the marginally significant relationship between depressive symptoms and total cholesterol (P = 0.047), and triglyceride (P = 0.041) levels persisted after adjustment for alcohol use. Similarly, the marginally significant relationship between depressive symptoms and total cholesterol (P = 0.047), and triglyceride (P = 0.041) levels persisted after adjustment for alcohol use. Similarly, the marginally significant relationship between depressive symptoms and total cholesterol (P = 0.047), and triglyceride (P = 0.041) levels persisted after adjustment for alcohol use. Similarly, the marginally significant relationship between depressive symptoms and total cholesterol (P = 0.047), and triglyceride (P = 0.041) levels persisted after adjustment for alcohol use. Similarly, the marginally significant relationship between depressive symptoms and total cholesterol (P = 0.047), and triglyceride (P = 0.041) levels persisted after adjustment for alcohol use. Similarly, the marginally significant relationship between depressive symptoms and total cholesterol (P = 0.047), and triglyceride (P = 0.041) levels persisted after adjustment for alcohol use.
Erratum

The authors of the above paper have discovered that the wrong numbers were plotted when compiling Fig. 1 of the above article. The corrected figure appears below:

Figure 1—Symptomatic hypoglycemic events. P < 0.03 vs. placebo. □, measured; ■, symptomatic.