Comparison of Insulin Monotherapy and Combination Therapy With Insulin and Metformin or Insulin and Troglitazone in Type 2 Diabetes

Suzanne M. Strowig, MSN, RN
M. Larissa Avilés-Santa, MD
Philip Raskin, MD

OBJECTIVE — To evaluate the safety and efficacy of treatment with insulin alone, insulin plus metformin, or insulin plus troglitazone in individuals with type 2 diabetes.

RESEARCH DESIGN AND METHODS — A total of 88 type 2 diabetic subjects using insulin monotherapy (baseline HbA1c 8.7%) were randomly assigned to insulin alone (n = 31), insulin plus metformin (n = 27), or insulin plus troglitazone (n = 30) for 4 months. The insulin dose was increased only in the insulin group. Metformin was titrated to a maximum dose of 2,000 mg and troglitazone to 600 mg.

RESULTS — HbA1c levels decreased in all groups, the lowest level occurring in the insulin plus troglitazone group (insulin alone to 7.0%, insulin plus metformin to 7.1%, and insulin plus troglitazone to 6.4%, P < 0.0001). The dose of insulin increased by 55 units/day in the insulin alone group (P < 0.0001) and decreased by 1.4 units/day in the insulin plus metformin group and 12.8 units/day in the insulin plus troglitazone group (insulin plus metformin versus insulin plus troglitazone, P = 0.004). Body weight increased by 0.5 kg in the insulin plus metformin group, whereas the other two groups gained 4.4 kg (P < 0.0001 vs. baseline). Triglyceride and VLDL triglyceride levels significantly improved only in the insulin plus troglitazone group. Subjects taking metformin experienced significantly more gastrointestinal side effects and less hypoglycemia.

CONCLUSIONS — Aggressive insulin therapy significantly improved glycemic control in type 2 diabetic subjects to levels comparable with those achieved by adding metformin to insulin therapy. Troglitazone was the most effective in lowering HbA1c, total daily insulin dose, and triglyceride levels. However, treatment with insulin plus metformin was advantageous in avoiding weight gain and hypoglycemia.

Diabetes Care 25:1691–1698, 2002

Approximately 15 million Americans have type 2 diabetes. With 625,000 new cases of diabetes each year, diabetes will continue to have a major impact on the health care of the population in the U.S. (1). Estimates suggest that as much as one-half of costs related to diabetes are attributable to the treatment of comorbid conditions and long-term diabetic complications (2,3). As a result, health care providers are concerned with identifying therapies that will effectively treat diabetes and prevent the complications of the disease.

The Diabetes Control and Complications Trial (DCCT) and the U.K. Prospective Diabetes Study (UKPDS) demonstrated the relationship between improved blood glucose control and the prevention of diabetic complications (4,5). However, type 2 diabetes is not only a metabolic disorder associated with hyperglycemia but also a syndrome of cardiovascular risk factors, such as dyslipidemia, hypertension, and obesity (6). More than 50% of deaths in people with diabetes is due to cardiovascular disease (7). Thus, the treatment of type 2 diabetes requires agents that not only lower blood glucose levels but also improve lipoprotein levels and blood pressure and reduce body weight.

The biguanide metformin has been shown to lower blood glucose levels by sensitizing the liver to the effects of insulin, thus suppressing hepatic glucose output. It also has mild effects on promoting glucose utilization. Metformin has also been shown to lower cholesterol and triglyceride levels, to reduce hyperinsulinemia and improve insulin sensitivity, and to assist with weight reduction (8,9). The thiazolidinedione troglitazone improves insulin sensitivity by enhancing insulin-mediated glucose disposal, resulting in reduced plasma insulin concentrations. Troglitazone may also have modest effects on lowering hepatic glucose production (10–12). Beneficial effects on serum lipid profiles (13–15), arterial blood pressure (16,17), and vascular tone (18,19) have also been reported.

Insulin therapy is associated with several metabolic benefits including improved insulin sensitivity, improved insulin secretion, decreased overnight hepatic glucose output, decreased postprandial blood glucose levels, and improved lipid profiles (20–24). However, large doses of insulin are often required to achieve near normal blood glucose levels and are associated with weight gain and the risk of hypoglycemia.
Despite the proven benefits of insulin, metformin, and troglitazone, there is progressive deterioration of glycemic control in type 2 diabetes when agents are used as monotherapy. In the UKPDS, mean blood glucose concentrations and HbA1c levels increased steadily, irrespective of treatment with diet, oral agents, or insulin (25). Six years after diagnosis, B-cell function had declined to between 28 and 52% of normal, and the investigators estimated that it would be necessary to add an additional agent every 4 years to maintain fasting glucose levels within the target range (26).

Theoretically, improved insulin sensitivity and lipid profiles associated with metformin and troglitazone therapy should provide an added benefit in subjects with type 2 diabetes who are taking insulin by further improving blood glucose levels and the cardiovascular risk profile. Combination therapy using sulfonylurea agents and metformin and/or troglitazone has been shown to improve blood glucose control compared with monotherapy (27–30). The use of metformin or troglitazone in combination with insulin has also demonstrated improved blood glucose control over insulin therapy alone (31–34). However, a direct comparison of insulin alone compared with insulin in combination with metformin or troglitazone has not been done.

RESEARCH DESIGN AND METHODS — Study patients were required to meet the following criteria: type 2 diabetes, aged 24–70 years, treatment with insulin alone, total daily insulin dose of at least 30 units, an HbA1c level ≥7.0%, and normal renal and hepatic function.

Subjects who met the inclusion criteria were randomly assigned in an unmasked fashion to continue insulin alone or to add metformin or troglitazone to insulin. Random assignment was determined by the sponsor who provided sealed sequentially numbered envelopes. The entire study period was 4 months; all patients received the maximum dosage tolerated from the patient’s meter to the computer; all patients used a glucose meter that stored the readings as well as the date and time the readings were obtained. The baseline dose of insulin and frequency of injections were never increased in subjects assigned to take metformin or troglitazone in combination with insulin (combination therapy). A 10–20% decrease in the dosage of insulin in subjects on combination therapy was permitted only if patients experienced frequent hypoglycemia or if the patient’s meter-obtained plasma glucose levels were consistently <100 mg/dl. The dose of metformin or troglitazone was not modified in response to plasma glucose levels.

The frequency of hypoglycemia was determined by the number of plasma glucose readings stored in the patient’s meter that were <65 mg/dl. Severe hypoglycemia was defined as any low plasma glucose level that patients were unable to treat themselves, and the patient’s symptoms were reversed with oral carbohydrate, glucagon, or intravenous glucose. Edema was determined to be absent or present based on physical examination at the beginning and end of the study or at any time the patient complained of swelling.

Analytical determinations — HbA1c levels were measured by using high-pressure liquid chromatography. An automated glucose oxidase method (Glucose Analyzer 2; Beckman Instruments, Fullerton, CA) was used to measure plasma glucose concentrations. C-peptide concentrations were measured by radioimmunoassay using polyclonal antiserum. Fasting lipid and lipoprotein concentrations were assessed by standard laboratory methods.

Statistical analysis — Demographic variables were checked for normality across groups. A log transformation improved normality for all of the variables. A one-factor ANOVA was done for the log of each demographic variable to determine whether the means differed across the three groups. Fisher’s exact tests of group by both race and sex were performed. Outcome variables were checked for normality across groups, and log transformations were used for total daily insulin dose, ALT, AST, C-peptide, HDL cholesterol, triglyceride, and VLDL levels.
triglyceride levels. A one-factor ANOVA was done for each of the outcome measures. ANOVA contrasts were obtained for group, time, and group-by-time interaction with Bonferroni correction. The Fisher-Hayter test was used to examine all pairwise comparisons (35).

Difference variables were analyzed using a one-way ANOVA. Where the ANOVA was significant, a multiple-comparisons test was performed to determine which means differed from one another. When variables did not meet the normality requirement, even with a log transformation, these variables were analyzed by the Kruskal-Wallis test. Where the means differed, a Mann-Whitney U test was used to examine all pairs, with a Bonferroni adjustment.

Two-tailed tests were performed for the analyses. A P value < 0.05 was considered statistically significant. All analyses were conducted using SAS software, version 6.12. Results are reported as the mean ± SD unless otherwise indicated.

RESULTS — Altogether, 92 subjects met the eligibility criteria and were randomly assigned to receive insulin alone or combination therapy. A total of 31 subjects were assigned to insulin alone, 30 subjects were assigned to insulin plus metformin, and 31 subjects were assigned to insulin plus troglitazone. Two subjects assigned to take insulin plus metformin experienced severe and unrelenting diarrhea on metformin 500 mg daily and withdrew from the study. One subject assigned to take insulin plus metformin achieved <80% compliance with medication administration and was terminated from study participation. One subject assigned to take insulin plus troglitazone withdrew from the study because she was concerned about the negative publicity associated with troglitazone. Thus, 88 subjects remained for analysis.

All three groups were comparable in age, sex, ethnicity, duration of diabetes, duration of insulin therapy, waist-to-hip ratio (average 0.93), and HbA1c level (see Tables 1 and 2). The group treated with insulin alone had a significantly lower mean C-peptide level at baseline than the insulin plus troglitazone group. C-peptide levels did not change in any group throughout the course of the study and were not related to change in HbA1c level. There was no apparent reason for the lower C-peptide level in the insulin alone group, such as ethnicity, sex, or duration of diabetes. The insulin plus troglitazone group weighed less (P < 0.001) and took more insulin at baseline (P < 0.01) than the other two groups. The average BMI among the groups, however, was similar.

The group assigned to insulin monotherapy had lower baseline triglyceride and VLDL triglyceride levels than the other two groups. Eight subjects in both the insulin alone group and insulin plus metformin group, and thirteen subjects in the insulin plus troglitazone group took lipid-lowering medication at baseline. Three subjects in the insulin plus troglitazone group taking lipid-lowering medication took gemfibrozil or nicotinic acid; the remaining subjects in all three groups using lipid-lowering medication took statin drugs. Two subjects in the insulin alone group and three subjects in both the insulin plus metformin and insulin plus troglitazone groups had triglyceride levels >500 mg/dl. We are unable to ascertain any reason for the lower triglyceride levels in the insulin alone group, and we believe this occurred simply by chance.

Glycemic control

All three groups demonstrated a significant improvement in glycemic control after 4 months of their assigned treatment (P < 0.0001) (Table 2). Comparable HbA1c levels were achieved at study end in the insulin alone and insulin plus metformin groups (mean 7.0 ± 1.0% and 7.1 ± 1.0%, respectively). However, the mean HbA1c level in the insulin plus troglitazone group was ~10% lower than in the other two groups (mean 6.4 ± 0.8%, P < 0.05 vs. insulin alone and insulin plus metformin). Two subjects in the insulin plus metformin group had no improvement in HbA1c level (HbA1c levels increased 0.1 and 0.3%). All of the subjects taking insulin and troglitazone experienced an improvement in HbA1c level. Four subjects taking insulin plus metformin were unable to tolerate the maximum dose of 2,000 mg/day. Three subjects took 1,000 mg/day, and one subject took 1,500 mg/day. The average reduction in HbA1c level in those taking less than the maximum dose of metformin did not differ from that of the subjects on the maximum dose (~1.8 vs. ~1.7). All of the subjects taking insulin plus troglitazone tolerated the maximum dose of 600 mg/day. Mean fasting plasma glucose concentrations significantly decreased in all three groups. Neither the change in fasting plasma glucose from baseline nor the absolute fasting plasma glucose concentrations at week 16 differed among the groups.

Daily insulin requirements

All patients received at least twice daily injections of insulin using either 70/30 insulin or NPH and regular insulin. At baseline, five subjects in each of the insulin alone and insulin plus metformin groups took three to four daily insulin injections of intermediate and short-acting insulin, and six subjects in the insulin plus troglitazone group took multiple daily insulin injections. At the end of 16 weeks of treatment, total daily insulin dosage increased

Table 1—Demographic parameters of the study population

<table>
<thead>
<tr>
<th></th>
<th>Insulin alone</th>
<th>Insulin plus metformin</th>
<th>Insulin plus troglitazone</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>31</td>
<td>27</td>
<td>30</td>
</tr>
<tr>
<td>Age (years)</td>
<td>54.4 ± 9.1</td>
<td>51.8 ± 10.5</td>
<td>51.7 ± 8.0</td>
</tr>
<tr>
<td>Sex (M/F)</td>
<td>15/16</td>
<td>15/12</td>
<td>13/17</td>
</tr>
<tr>
<td>Ethnicity (n)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Caucasian</td>
<td>17</td>
<td>14</td>
<td>17</td>
</tr>
<tr>
<td>African-American</td>
<td>9</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>Hispanic</td>
<td>5</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>Other</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Duration of diabetes (years)</td>
<td>10.5 ± 7.3</td>
<td>7.6 ± 4.1</td>
<td>11.6 ± 6.8</td>
</tr>
<tr>
<td>Duration of insulin therapy (years)</td>
<td>4.8 ± 4.7</td>
<td>3.5 ± 3.3</td>
<td>5.1 ± 4.0</td>
</tr>
<tr>
<td>C-peptide (ng/ml)</td>
<td>1.9 ± 1.4*</td>
<td>2.5 ± 1.7</td>
<td>2.8 ± 1.9</td>
</tr>
<tr>
<td>BMI</td>
<td>36.4 ± 9.0</td>
<td>37.1 ± 6.6</td>
<td>36.4 ± 6.0</td>
</tr>
</tbody>
</table>

Data are means ± SD. *P < 0.05 vs. insulin plus troglitazone.
by 55 units (P < 0.0001) in the group treated with insulin alone, from 0.75 to 1.2 units/kg. The mean total daily insulin dose decreased by 1.4 units/day in the insulin plus metformin group (0.78 units/kg at baseline to 0.77 units/kg at week 16), and decreased by 1.28 units/day in the insulin plus troglitazone group (0.95 units/kg at baseline to 0.79 units/kg at week 16). The changes in total daily insulin dose in the insulin plus metformin and insulin plus troglitazone groups were significantly different from each other (P = 0.004) (Fig. 1).

The frequency of injections was increased in the insulin alone group as well. Of the 31 subjects treated with insulin alone, 7 subjects changed from two daily injections of NPH and regular insulin to three or four daily injections of NPH and regular insulin. One subject assigned to insulin monotherapy changed from 70/30 insulin twice daily to mixing NPH and regular insulin twice daily. There was no change from baseline in the frequency of injections or type of insulin used by subjects on combination therapy.

Body weight and daily caloric intake
A comparable increase in body weight occurred in the insulin alone (4.4 ± 4.3 kg) and troglitazone plus insulin (4.4 ± 3.2 kg) groups (P < 0.0001 baseline vs. week 16). The increase in weight in these two groups was significantly different from the minimal change in weight (0.49 ± 2.8 kg) that occurred in the insulin plus metformin group (P < 0.0001).

Based on the 3-day food records obtained at baseline and at the end of the study, the daily caloric intake increased by ~99 ± 571 calories at the end of the study period in the insulin alone group. Daily caloric intake decreased in those taking either metformin or troglitazone in combination with insulin (~292 ± 442 and ~253 ± 625 kcal, respectively, P < 0.04 vs. baseline).

Lipid and lipoprotein levels
There were no significant changes in total cholesterol, LDL cholesterol, and HDL cholesterol levels from baseline to the end of the study in any of the three treatment groups. A significant improvement in total triglyceride (~55.3 ± 119.4 mg/dl) and VLDL triglyceride levels (~52.1 ± 114.9 mg/dl) occurred in the group treated with insulin plus troglitazone.
Insulin as monotherapy resulted in a reduction in the HbA1c level from 8.7 ± 1.6 to 7.0 ± 1.0%. Patients required ~69% more insulin from baseline to achieve these results. They also required a more complicated insulin regimen in ~25% of the cases, necessitating more time and effort on the part of the patient and the health care team. Subjects on insulin monotherapy also gained a significant amount of weight (4.4 kg). These results suggest that patients who cannot tolerate or cannot afford insulin sensitizers can be effectively controlled on insulin therapy alone.

In insulin combination with metformin resulted in a comparable average reduction in HbA1c, as with insulin monotherapy (from 8.8 ± 1.2 to 7.1 ± 1.0%). However, this improvement was achieved without an increase in the total daily dose (average of ~1.4 units) or complexity of the insulin regimen and with essentially no weight gain (0.5 kg) or hypoglycemia (0.6 episodes per patient per month). The disadvantage is that two-thirds of the subjects taking metformin experienced gastrointestinal side effects. Although the gastrointestinal side effects were usually mild and transient, 2 of 30 subjects could not tolerate metformin at all, and 4 of 30 were unable to tolerate the maximum dose of 2 g per day.

The lowest HbA1c was achieved by subjects taking insulin plus troglitazone (8.5 ± 1.2 to 6.4 ± 0.8%). This occurred despite the fact that the average total daily insulin dose was reduced from 0.95 to 0.79 units/kg, a significantly greater reduction in total daily dose than occurred in subjects taking insulin plus metformin. The reduction in insulin dose occurred despite a weight gain of nearly 4.5 kg. By chance, subjects assigned to take insulin and troglitazone were less insulin sensitive at baseline than the other two groups, taking a significantly larger dose of insulin to achieve comparable baseline HbA1c levels. The baseline dose of insulin of 0.78 units/kg in subjects treated with insulin and metformin remained essentially unchanged.

These results suggest that troglitazone may be a more effective insulin sensitizer than metformin and are consistent with the findings by Yu et al. (32) who demonstrated a 29% improvement in insulin sensitivity in subjects on CSII and troglitazone compared with no significant improvement in subjects on CSII and metformin. Yu et al. further showed that insulin requirements decreased by 53% in subjects taking troglitazone compared with 31% in subjects taking metformin ($P < 0.005$).

Treatment with insulin plus troglitazone also resulted in significant reductions in total triglyceride and VLDL triglyceride levels. However, the frequency of hypoglycemia, albeit low (two episodes per patient per month), was about three times greater than that which occurred with the combination of insulin and metformin. There were no abnormalities in liver function tests in the group that received troglitazone.

The results in the insulin plus troglitazone group compare with those of Schwartz et al. (33) who reported a significant improvement in HbA1c levels, an increase in weight, and a decrease in insulin requirements in type 2 diabetic subjects taking 600 mg of troglitazone in combination with insulin. The improved HbA1c levels reached a nadir after 16 weeks of treatment. Schwartz et al. reported somewhat less weight gain (3.6 kg) and a greater reduction in insulin dosage (29%), however, than that observed in this study. This is likely related to the fact that the HbA1c levels decreased by 1.4% in the study by Schwartz et al. versus 2.4% in this study.

Troglitazone is no longer available, and we can only speculate that other thiazolidinedione compounds will produce similar results. Studies have shown that rosiglitazone and pioglitazone improve insulin sensitivity (36,37) and glycemic control (38,39) to levels that are similar to those achieved with troglitazone.

Although the HbA1c levels were comparable in the insulin alone and insulin plus metformin groups at the end of the study, it is likely that lower HbA1c levels could have been achieved in subjects taking combination therapy if the study design had allowed for increases in the insulin dose in these subjects. In the study by Aviles-Santa (31), in which subjects were masked to treatment with insulin plus a placebo or insulin plus metformin, the dose of insulin was increased as needed in both groups to achieve a normal HbA1c level. The outcome revealed a 1.0% greater decline in HbA1c in subjects who were taking insulin plus metformin compared with those taking insulin plus placebo. Subjects in Aviles-Santa’s study who took insulin alone achieved an over-

CONCLUSIONS — These results demonstrate that insulin monotherapy as well as insulin in combination with insulin sensitizers, such as metformin and troglitazone, are effective in improving glycemic control. There are important differences among the therapies, however.
all lowering of the HbA1c level of 1.5%, a result consistent with the findings of subjects in this study who received insulin monotherapy.

Metformin is advantageous and unique in avoiding the weight gain associated with other pharmacological treatments of type 2 diabetes. Avilés-Santa reported a 0.5-kg weight gain in subjects taking insulin plus metformin despite a reduction in HbA1c level of 2.5%. The insulin plus placebo subjects in her study gained an average of 3.2 kg. Others have also reported this (40,41). Although metformin has anorexic properties, the precise reason metformin-treated diabetic patients do not gain weight is unclear. In this study, subjects taking insulin plus metformin reported ingesting an average of nearly 300 fewer calories per day at the end of 4 months of treatment. On the other hand, subjects taking insulin plus troglitazone also reported eating an average of 250 fewer calories per day despite gaining nearly 4.5 kg. The large standard deviation in reported caloric intake, however, places the reliability of the food records into question, and makes it difficult to draw any firm conclusions regarding change in dietary intake.

Although weight gain is undesirable, is a weight gain of 4.5 kg harmful relative to the benefits of improved glycemic control? In the DCCT, the intensively treated type 1 diabetic patients gained an average of 4.5 kg while lowering HbA1c levels by nearly 2%, similar to what was observed in this study. Yet, intensive treatment in the DCCT resulted in a significantly lower risk for the development and progression of retinopathy, nephropathy, and neuropathy as well as significantly lower cholesterol and triglyceride levels and fewer macrovascular events (4,42). In the UKPDS of over 4,500 type 2 diabetic patients, each 1% reduction in updated mean HbA1c level was associated with reductions in risk of 37% for microvascular complications and 14% for macrovascular complications (43). In the UKPDS, intensively treated subjects also gained an average of 3–4 kg (5).

On the other hand, the weight gain in the DCCT and UKPDS occurred over several years; the weight gain in this study occurred over several months. Because troglitazone is associated with fluid retention and edema (9), we cannot exclude the possibility that weight gain in this group was at least partially due to fluid retention, even though we did not observe a significant increase in edema in subjects treated with insulin plus troglitazone. The potential for fluid retention is potentially dangerous, especially in patients who have heart disease.

Studies have shown that troglitazone treatment is associated with a shift of adipose tissue from more metabolically active and perhaps harmful central fat depots to less metabolically active and less harmful peripheral sites (44,45). Troglitazone’s effect on improving insulin sensitivity may be related to an increase in the amount of brown adipose tissue, which dissipates energy via oxidation of fatty acids (46,47). Thus, the potential for detrimental effects from weight gain seen with the combination of insulin and troglitazone is unclear. Patients should be counseled to modify dietary intake to minimize weight gain when thiazolidinediones are initiated, and health care providers should carefully assess for signs of fluid retention.

In general, hypoglycemia occurred infrequently, was mild and self-treated, and was not a deterrent to continued participation in the study or to increasing the dose or modifying the insulin regimen in patients treated with insulin alone. Insulin monotherapy and insulin in combination with troglitazone were associated with comparable amounts of hypoglycemia (1.75 episodes per patient per month). Insulin plus metformin was associated with the least amount of hypoglycemia. Treatment with metformin has not been associated with hypoglycemia (48). The reason for this is unknown.

Only one subject experienced episodes of severe hypoglycemia. He was randomized to insulin alone and had reported several episodes of severe hypoglycemia before entering the study. Diabetic patients should be well educated about the symptoms, prevention, and treatment of hypoglycemia, and blood glucose monitoring should be encouraged with all intensified treatment regimens.

Subjects in this study were unmasked to treatment, introducing the possibility for bias. There were also baseline differences among the groups for triglyceride and C-peptide levels (lower for the insulin alone group) and total daily dose (higher in the insulin plus troglitazone group). However, the investigators closely adhered to the guidelines for insulin adjustment, and we do not believe that the baseline differences significantly influenced the outcome of the study or negate the interpretation of the data.

Over one-third of type 2 diabetic individuals in the U.S. are estimated to have an HbA1c level >8.0%, including 51.5% of those who take insulin (49). This study demonstrates that near normal glycemic control can be achieved with insulin monotherapy or insulin in combination with insulin sensitizers. Although weight gain is undesirable, avoiding weight gain should not be pursued at the expense of improving glycemic control. The overwhelming evidence regarding the impact of improved glycemic control on lowering the risk for the development and progression of microvascular complications of diabetes mandates early and aggressive treatment of type 2 diabetes that results in blood glucose levels as close to normal as possible. Pharmacological advances in the management of diabetes, including insulin sensitizers, help make normoglycemia an eminently achievable goal.

Acknowledgments—This study was supported in part by a grant from Bristol-Myers-Squibb. The authors are indebted to Barbara Foster for the statistical analysis of the data and to Kelly Sherrill for her technical assistance in conducting the study.

References

5. UK Prospective Diabetes Study (UKPDS) Group: Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of
34. Stratton IM, Adler AI, Neil HA, Matthews DR, Manley SE, Cull CA, Hadden D, Turner RC, Holman RR: Association of

