Effect of Long-Term Exposure to Insulin Lispro on the Induction of Antibody Response in Patients With Type 1 or Type 2 Diabetes

S. Edwin Fineberg, MD1
Jie Huang, PhD2
Rocco Brunelle, MS2
K. S. Gulliya, PhD2
James H. Anderson, Jr., MD1,2

OBJECTIVE — To determine the long-term effects of insulin lispro on inducing lispro-specific, insulin-specific, and cross-reactive (reactive with both insulin lispro and human insulin) antibodies.

RESEARCH DESIGN AND METHODS — A multinational, multicenter combination of controlled and noncontrolled, open-label studies of 4–5 years’ duration was designed to evaluate the long-term immunologic profile of subcutaneously administered insulin lispro. A total of 1,221 patients (men and women; 12–81 years of age) with type 1 or type 2 diabetes were enrolled. Circulating anti-insulin antibodies were measured using radioimmunoassays.

RESULTS — Insulin-specific and lispro-specific antibody responses were within the background noise levels of the assays. Significant elevations of antibody were confined to a cross-reactive antibody response. Antibody levels resulting from prior exposure to long- and short-acting insulins changed little after transfer to insulin lispro and remained within or near the baseline levels. De novo exposure to insulin lispro resulted in increases in cross-reactive but not insulin- or lispro-specific antibody levels. Cross-reactive antibodies developed more readily in patients with type 1 diabetes than in those with type 2 diabetes. Long-term antibody responses tended to decrease over time and returned to baseline or near-baseline levels by the end of the long-term studies. No evidence of an anamnestic antibody response could be found in individuals treated intermittently with insulin lispro.

CONCLUSIONS — The immunogenic profile of patients treated with insulin lispro was comparable to that of patients treated with recombinant human insulin. Inductions of significant levels of specific or cross-reactive antibodies were not observed in patients who had received insulin previously. No significant antibody-dependent increases in insulin dosage requirements were noted in these patients. The incidence of insulin allergy was not different from that in patients treated with recombinant regular human insulin.

Diabetes Care 26:89–96, 2003

Insulin antibodies have been linked with cutaneous and systemic allergic reactions (1–11) and insulin resistance (12–24). Before highly purified insulin products, allergic responses were seen in up to 30% of patients. Animal insulin preparations were linked to the development of high levels of circulating anti-insulin antibodies in virtually all patients. With the use of highly purified animal and human insulins, insulin antibody levels are lower and clinically observable allergic phenomena are unusual. Although anti-insulin antibodies developed in patients treated with recombinant human insulin and purified animal insulins (25), local allergic skin reactions were seen in <2% of patients and lipoatrophy was seen rarely (26).

In patients with a history of treatment with animal insulins of various degrees of purity, the presence of insulin antibodies has been shown variably to correlate with increased insulin requirements (27). Currently, insulin antibody–mediated insulin resistance resulting in insulin requirements of >1.5 units·kg−1·day−1 in adults and >2.5 units·kg−1·day−1 in children is an extremely rare complication of therapy (26).

To develop insulin analogs with more desirable pharmacokinetic properties, alterations have been made in the amino acid sequence and/or the chemical makeup of human insulin. Ideally, analogs should neither produce an immune response that results in local or systemic allergic manifestations in excess of those of human insulin preparations nor result in the generation of antibodies that bind to and neutralize exogenous or endogenous insulin. However, insulin analogs may present new epitopes for recognition by the immune system.

Insulin lispro, a rapid-acting analog of human insulin, was created by the reversal of the sequence of amino acids 28 and 29 of the human insulin B-chain (human insulin = Pro B28-Lys B29, insulin lispro = Lys B28-Pro B29) (28).

To assess the long-term immunogenic response to insulin lispro in patients with type 1 or type 2 diabetes, insulin lispro-specific antibodies (LSA), insulin-specific antibodies (ISA), and antibodies reactive with both insulins (i.e., cross-reactive antibodies) were measured. Insulin-mediated allergy and the effect of anti-
Insulin lispro–induced antibody response

Table 1—Parent and extension insulin lispro studies

<table>
<thead>
<tr>
<th>Parent studies (A–H) and insulin treatment history</th>
<th>Study design</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prior insulin treatment</td>
<td></td>
</tr>
<tr>
<td>Study A</td>
<td>1-year, parallel</td>
</tr>
<tr>
<td>Study B</td>
<td>Type 1</td>
</tr>
<tr>
<td>Study C</td>
<td>Type 2</td>
</tr>
<tr>
<td>Study D</td>
<td></td>
</tr>
<tr>
<td>Insulin-naive</td>
<td></td>
</tr>
<tr>
<td>Study E</td>
<td>1-year, parallel</td>
</tr>
<tr>
<td>Study F</td>
<td>Type 1</td>
</tr>
<tr>
<td>Prior insulin treatment</td>
<td>Type 2</td>
</tr>
<tr>
<td>Study G</td>
<td></td>
</tr>
<tr>
<td>Study H</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Extension studies (K, O, M, N) (enrolled patients)</th>
<th>Design (completed patients)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Study K</td>
<td>Single arm, up to 4 years</td>
</tr>
<tr>
<td>(271)</td>
<td>(214)</td>
</tr>
<tr>
<td>13.4–71.5 years; 53/47% M/F; 86.4% Caucasian</td>
<td></td>
</tr>
<tr>
<td>Study O</td>
<td>Single arm, up to 4 years</td>
</tr>
<tr>
<td>(167)</td>
<td>(121)</td>
</tr>
<tr>
<td>13.7–69.4 years; 60/40% M/F; 96.1% Caucasian</td>
<td></td>
</tr>
<tr>
<td>Studies M and N</td>
<td>Single arm, up to 4 years</td>
</tr>
<tr>
<td>(771)</td>
<td>(653)</td>
</tr>
<tr>
<td>13.7–80.7 years; 56/44% M/F; 95.4% Caucasian</td>
<td></td>
</tr>
</tbody>
</table>

insulin antibodies on the dose of insulin were also evaluated.

RESEARCH DESIGN AND METHODS — The studies were conducted according to the applicable laws of each participating country, the ethical principles of the Declaration of Helsinki, and guidelines for Good Clinical Practice.

Study objective

The primary objective of the combined studies was to assess the safety of insulin lispro with respect to the long-term immunologic response. One-year immunologic effects were previously reported (29).

Study protocol

This composite multinational, multicenter, controlled and noncontrolled, open-label study evaluated 1,221 men and women with type 1 or type 2 diabetes (30) from parent studies (demographics detailed previously) (29,31,32) who continued in extension studies with 988 patients completing ~4 additional years (Table 1). Exclusion criteria included significant renal, hepatic, or cardiac disease, cancer, drug or alcohol abuse, significant insulin allergy, recurrent severe hypoglycemia, anemia or hemoglobinopathy, BMI >35 kg/m², pregnancy, lactation, and treatment with oral hypoglycemic agents, systemic glucocorticoids, insulin therapy via pump, or insulin doses >2.0 units · kg⁻¹ · day⁻¹.

Insulin dose and administration procedures

Human insulin analog insulin lispro (ILYS [B28], PRO [B29]), rDNA (Human; Eli Lilly and Company, Indianapolis, IN) was provided in 10-ml vials or 1.5-ml cartridges (100 units/ml [3.5 mg/ml]). Basal insulin study drugs were Humulin N provided in 10-ml vials or 1.5-ml cartridges (100 units/ml [3.5 mg/ml]) and Humulin U provided in 10-ml vials (100 units/ml [3.5 mg/ml]). All insulins were administered subcutaneously. For the extension studies, patients used commercially available intermediate or long-acting formulations of human insulin as their basal insulin, and the investigator adjusted the dosage and time of injection of insulin lispro and basal insulin in accordance with the metabolic needs of the patient.

Organization of data

Data from these trials were segregated into three parts as described below.

Part 1 (Studies A–D and Extension Study K). Patients with type 1 or type 2 diabetes previously treated with human insulin for at least the last 2 years who were randomized to insulin lispro and successfully completed Studies A, B, C, or D (12-month parallel studies) continued treatment with insulin lispro in Extension Study K. Of 271 patients (145 men, 126 women) who were enrolled, 57 discontinued the study. Four patients discontinued the study due to unintended pregnancies and four patients died due to causes unrelated to the study. In addition, 7 patients changed their place of residence, 25 patients had personal conflicts or other personal reasons for discontinuation, 8 patients discontinued because of a protocol violation, 5 patients discontinued because of lack of efficacy (either patient’s or physician’s perception or both), and 4 patients were lost to follow-up. A total of 214 patients continued throughout the extension study.

Part 2 (Studies E–F and Extension Study O). Patients who were new to insulin therapy who were randomized to insulin lispro and successfully completed Studies E or F (12-month parallel studies) continued treatment with insulin lispro in Extension Study O. Of the 179 patients who entered from the parent studies E or F, 167 had received insulin lispro.

Of the 167 patients who received insulin lispro (39 patients with type 1 diabetes and 128 patients with type 2 diabetes), 46 discontinued the study. One patient developed squamous cell carcinoma, 3 patients died due to causes unrelated to the study, 7 patients were lost to follow-up, 5 patients changed their place of residence, 17 patients discontinued because of a personal conflict or other personal decision, 6 patients discontinued because of a protocol violation, and 7 patients discontinued because of their physician’s decision. A total of 121 patients completed the extension study.

Part 3 (Cross-Over Studies G and H and Extension Studies M and N). Patients previously treated with insulin were randomized to insulin lispro or human insulin in a 6-month cross-over design and continued treatment with insulin lispro.
pro in the Extension Studies M and N. These studies allowed determination of whether an anamnestic response would occur after intermittent exposure to insulin lispro in patients who were randomized to the insulin lispro first and regular human insulin second followed by lispro in the extension.

A total of 445 men and 326 women with type 1 (n = 509) or type 2 (n = 262) diabetes continued on insulin lispro during the extension studies. A total of 653 patients completed the studies. Reasons for discontinuation of the study included adverse events (19 patients), death (9 patients), change of place of residence (9 patients), loss to follow-up (12 patients), withdrawal from the study (28 patients), violation of protocol (12 patients), and perceived lack of efficacy (29 patients).

Antibody assay
Blood samples for the measurement of ISA, LSA, and cross-reactive antibodies were collected at various times during each study. Although these measurements were made in two separate laboratories, the assay protocols were identical and extensive cross-referencing of sera was performed. In brief, the antibody assay used was a self-blank assay in which prebound insulin is removed using dextran charcoal, samples are studied in duplicate, and specificity is established by differential displacement of bound, labeled insulin by addition of excess antigens (33). The interassay coefficient of variation of diluted antibody run at dilutions of 1:20,000 and 1:40,000 were 10% (mean binding 48.2%) and 14.9% (mean binding 23.2%), respectively, for cross-reactive antibodies. The reference ranges used (based on healthy subjects not previously exposed to exogenous insulin) for each antibody assayed were 0–2.5% for ISA, 0–3.2% for LSA, and 0–2.5% for cross-reactive antibodies in laboratory 1 and 0–0.80% for ISA, 0–0.85% for LSA, 0–1.57% for cross-reactive antibodies in laboratory 2. In one laboratory, the assays were performed during the parent phase of the trials, and in the other laboratory, the assays were performed during the extension phase. For assessing parent and extension phase cross-reactive antibody data together, the values from both laboratories were transformed using an empirical cumulative distribution function (CDF) transformation (34).

For evaluating antibody data over time, data from the parent and extension studies were combined. Data were analyzed by type 1 and type 2 diabetes and presented by visit. The baseline measurement from the parent studies was considered Month 0. Visit 1 of the extension studies was conducted at 12 months of therapy (except for Part 3, which was conducted at 6 months of therapy).

Statistical methods
The statistical analyses were performed using SAS statistical software (SAS Institute, Cary, NC). Mean and 95% CIs are presented for each visit (Figs. 1–5). End point was compared with baseline using Wilcoxon’s signed-rank test. Repeated cross-reactive antibody measurements over time for patients were analyzed using a quadratic model (PROC MIXED in SAS) in which the exposure time on insulin lispro was the independent variable and the cross-reactive antibody binding was the dependent variable. The intercept and the linear and quadratic coefficients were defined as random effects, because these parameters differ for each patient, and an unstructured covariance term was used.

RESULTS
Part 1
In patients who were previously treated with human insulin, data obtained were
analyzed with respect to change from baseline to end point. For ISA, the mean values and upper 95% CIs for all visits were within or near the reference range. The ISA response (Fig. 1) in type 1 patients was consistently higher than in type 2 patients until after 40 months of the study. The end points were not statistically different from baseline. For LSA, the mean values and upper 95% CIs for most of the visits were within or near the reference range. There was a virtually complete overlap (Fig. 2) in LSA response between patients with type 1 and type 2 diabetes for a period of more than 25 months. Inconsistent differences at some individual visits and at baseline were detected for patients with both types of diabetes. The end point was not statistically different from baseline. Overall, the levels of both ISA and LSA remained within the reference range. Baseline cross-reactive antibody levels were relatively low in these insulin-naive patients. After initiation of insulin therapy, these levels increased during the first 12 months, followed by a gradual decrease that continued for the remainder of therapy.

Individual cross-reactive antibody values (Fig. 3) show good fit of the data ($r^2 = 0.741$ for patients with type 1 diabetes and $r^2 = 0.760$ for patients with type 2 diabetes, between predicted and original values), indicating that the observed antibody response was consistent with the visit versus time analysis.

Part 2

The antibody data were assessed in patients who were not previously treated with insulin with respect to change from baseline to end point. For ISA, the mean values and upper 95% CIs for all visits were within or near the reference range. The ISA response (data similar to Fig. 1 are not shown) in type 1 diabetes patients was slightly higher than in type 2 patients. The end points were statistically not different from baseline.

There was a virtually complete overlap in LSA response (data similar to Fig. 2 are not shown) between patients with type 1 and type 2 diabetes for a period of 20 months, followed by a sustained divergence of patients with type 1 diabetes, with a slightly higher response. Inconsistent differences at some individual visits and at baseline were detected for patients with both types of diabetes. The end point was not statistically different from baseline. Overall, the levels of both ISA and LSA remained within the reference range.

Baseline cross-reactive antibody levels were relatively low in these insulin-naive patients. After initiation of insulin therapy, these levels increased during the first 12 months, followed by a gradual decrease that continued for the remainder of therapy.
the study. The mean cross-reactive antibody levels in patients with type 2 diabetes were higher than the upper limit of the range for patients who were never exposed to insulin (Fig. 4). However, these levels were within the range for patients who were previously exposed to insulin (0–43.0%). Most patients had very low levels of antibodies with an occasional high value (50 and 75 percentile values were only 2 and 7%, respectively). The end point was statistically different from baseline in patients with type 1 diabetes ($P = 0.001$) and those with type 2 diabetes ($P = 0.001$).

In addition, as previously observed with other insulins, patients with type 1 diabetes and insulin-naive patients had higher antibody binding levels than the patients with type 2 diabetes. Results of cross-reactive antibody binding (Fig. 4) show a good fit of the data ($r^2 = 0.736$ for type 1 diabetes, and $r^2 = 0.776$ for type 2 diabetes), indicating that the observed antibody response was consistent with the visit versus time analysis.

Figure 5—Percent binding of cross-reactive antibodies from cross-over studies in insulin-treated patients with type 1 or type 2 diabetes. Mean and 95% CIs over time are shown. The vertical dotted line separates parent and extension studies. The inset graph is the fitted quadratic random mixed model.

Insulin antibodies and insulin dose (parent studies only)

In all studies, these analyses did not show any statistically significant relationship between the change in the total daily insulin dose and the change in percent antibody binding for any of the antibody types (ISA, LSA, cross-reactive antibody).

Allergic reactions

The incidence of treatment-emergent adverse events potentially related to allergy was compiled from the database of all patients treated with insulin lispro, human insulin, or both in Studies A through H (Table 2). With respect to the general terms of allergic reaction, rash, and pruritus, the reported incidence was <3% and comparable between the treatment groups. When events of rash and pruritus were examined individually, 78 rash events and 17 pruritus events could be reasonably associated with an insulin-unrelated event (such as insect bite, sunburn, etc.). In the remaining 83 rash events (40 for human regular insulin and 43 for insulin lispro) and 26 pruritus events (11 for human regular insulin and 15 for insulin lispro), there were no statistical differences between treatment groups. For all other event categories, the incidence was <0.5% and there were no statistical differences between treatment groups. The incidence of allergic reactions for patients with the highest 1% of cross-reactive antibody or LSA binding was not different from the group as a whole.

CONCLUSIONS—Even with the use of human insulin, low-level antibody responses and allergic responses still occur, albeit with much less intensity and frequency. One can speculate as to whether these events are triggered by excipients in commercial insulin, such as protamine or preservatives, small amounts of insulin fragments, or dimers (35,36), or by the fact that therapeutic insulin is usually injected into the subcutaneous tissue. Several structural and pharmacological features of insulin lispro suggested that the immunogenic potential would be low. First, the reversal of the amino acids at B28 and B29 is in a relatively nonimmunogenic area of the molecule, and no additional or foreign amino acids were added to the structure. Secondly, the Lys B28-Pro B29 sequence duplicates the corresponding sequence in
Insulin lispro–induced antibody response

Table 2—Overall incidence of treatment-emergent adverse events potentially related to manifestations of insulin allergy

<table>
<thead>
<tr>
<th>Event classification</th>
<th>Humulin R (N = 2,265)</th>
<th>Insulin lispro (N = 2,247)</th>
<th>Total (N = 1,512)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patients with ≥1 treatment-emergent adverse events</td>
<td>165 (7.3)</td>
<td>178 (7.9)</td>
<td>343 (7.6)</td>
</tr>
<tr>
<td>Patients with no treatment-emergent adverse events</td>
<td>2,100 (92.7)</td>
<td>2,069 (92.1)</td>
<td>4,169 (92.4)</td>
</tr>
<tr>
<td>Rash</td>
<td>63 (2.8)</td>
<td>64 (2.9)</td>
<td>127 (2.8)</td>
</tr>
<tr>
<td>Allergic reaction</td>
<td>52 (2.3)</td>
<td>60 (2.7)</td>
<td>112 (2.5)</td>
</tr>
<tr>
<td>Pruritus</td>
<td>15 (0.7)</td>
<td>26 (1.2)</td>
<td>41 (0.9)</td>
</tr>
<tr>
<td>Vasodilatation</td>
<td>10 (0.4)</td>
<td>12 (0.5)</td>
<td>22 (0.5)</td>
</tr>
<tr>
<td>Urticaria</td>
<td>4 (0.2)</td>
<td>10 (0.4)</td>
<td>14 (0.3)</td>
</tr>
<tr>
<td>Application site reaction</td>
<td>9 (0.4)</td>
<td>4 (0.2)</td>
<td>13 (0.3)</td>
</tr>
<tr>
<td>Hypotension</td>
<td>5 (0.2)</td>
<td>5 (0.2)</td>
<td>10 (0.2)</td>
</tr>
<tr>
<td>Face edema</td>
<td>5 (0.2)</td>
<td>4 (0.2)</td>
<td>9 (0.2)</td>
</tr>
<tr>
<td>Maculopapular rash</td>
<td>3 (0.1)</td>
<td>6 (0.3)</td>
<td>9 (0.2)</td>
</tr>
<tr>
<td>Injection site reaction</td>
<td>1 (0.0)</td>
<td>4 (0.2)</td>
<td>5 (0.1)</td>
</tr>
<tr>
<td>Generalized edema</td>
<td>3 (0.1)</td>
<td>1 (0.0)</td>
<td>4 (0.1)</td>
</tr>
<tr>
<td>Reaction unevaluable</td>
<td>1 (0.0)</td>
<td>3 (0.1)</td>
<td>4 (0.1)</td>
</tr>
<tr>
<td>Injection site pain</td>
<td>1 (0.0)</td>
<td>2 (0.1)</td>
<td>3 (0.1)</td>
</tr>
<tr>
<td>Injection site atrophy</td>
<td>0</td>
<td>2 (0.1)</td>
<td>2 (0.0)</td>
</tr>
<tr>
<td>Shock</td>
<td>1 (0.0)</td>
<td>1 (0.0)</td>
<td>2 (0.0)</td>
</tr>
<tr>
<td>Injection site inflammation</td>
<td>1 (0.0)</td>
<td>0</td>
<td>1 (0.0)</td>
</tr>
<tr>
<td>Injection site mass</td>
<td>0</td>
<td>1 (0.0)</td>
<td>1 (0.0)</td>
</tr>
<tr>
<td>Petechial rash</td>
<td>1 (0.0)</td>
<td>0</td>
<td>1 (0.0)</td>
</tr>
</tbody>
</table>

Data are n (%). N = total number of patients; n = number of patients (Studies A–H) who reported at least one event in the category.

the structurally similar IGF-1 molecule, so the body normally “sees” this amino acid sequence. Thirdly, insulin lispro is very rapidly absorbed from the subcutaneous tissue, and prior insulin studies have suggested that the immunogenic potential of an insulin formulation is correlated with the duration of residence in the subcutaneous tissue. Insulins in suspension form have been shown to be more immunogenic than soluble preparations (25). This view is further supported by the findings of increased concentration of anti-insulin antibodies during continuous subcutaneous insulin infusion and multiple-injection therapy (37).

Previous short-term studies have demonstrated that the immunogenicity of insulin lispro was not different from regular human insulin in patients with type 1 or type 2 diabetes treated for 12 months (29). The present analyses of these combined studies provide the first opportunity to define the immunologic profile of insulin lispro over an extended treatment period of more than 4 years. For both patients with and without prior insulin therapy, the values of ISA and LSA antibodies generally remained within the nonexposed reference ranges for the duration of the study. Most antibodies generated in these clinical trials were cross-reactive rather than specific (29). In both patients with type 1 or type 2 diabetes previously treated with insulin, there were small increases in cross-reactive antibody levels from baseline to peaks at 14–18 months during insulin lispro therapy. Subsequent to these responses, the cross-reactive antibody levels gradually declined to the baseline levels by 36–48 months of treatment. Although it has been reported that in patients started on either highly purified porcine or recombinant human insulin antibodies develop by 6 months followed by a decline thereafter, earlier work has suggested that less immunogenic insulins are associated with a later peak of smaller magnitude (25,38,39). Patients not previously treated with insulin also exhibited predominantly cross-reactive antibody responses with peak responses by 12 months and a declining over the remaining years of the study. In both treatment groups, patients with type 1 diabetes developed insulin antibodies more readily than patients with type 2 diabetes (29).

In patients who received intermittent therapy with insulin lispro in the crossover followed by extension studies, there was no anamnestic response in either the cross-reactive or the lispro-specific antibodies. In most studies, as previously reported (39), there were no relationships between changes in cross-reactive antibodies and changes in insulin dosage over time. The few statistically significant changes occurred only in patients with type 1 diabetes, and these changes were inconsistent with dosages moving in opposite directions with slight increases in antibody. The incidence of nonspecific allergic response was slightly >2% and occurred with similar frequency in treatment with insulin lispro and human insulin. Therefore, the allergic profile of insulin lispro is low and similar to that of human insulin (26,29).

Insulin lispro has been successfully used to manage patients with cutaneous insulin allergy or immunologic resistance (9,24,40–46). Case reports indicate that insulin lispro seems to have lower immunogenic potency (9,10,24,40). In intradermal tests, the initial wheal-flare response generated by insulin lispro was 50% less intense than human insulin, which progressively declined and vanished by week 25 (9). This reduced immunogenic response may be attributable to the rapid monomeric state of insulin lispro after injection (10). Additionally, a reduction in insulin autoantibodies has been observed after treatment with insulin lispro (41).

Long-term treatment with insulin lispro, similar to recombinant human insulin, elicits a low and clinically inconsequential immunogenic response. As with other insulins, treatment with insulin lispro is associated with slightly greater antibody responses in patients with type 1 diabetes than in those with type 2 diabetes. Intermittent treatment does not exaggerate specific or cross-reactive antibody response. Patients treated with insulin lispro do not develop increased insulin dosage requirements, nor do they experience an increase in events related to insulin allergy.

Acknowledgments—This work was sponsored by Eli Lilly and Company.

The authors thank Kenneth Robertson, PharmD, for his valuable contributions in the preparation of the manuscript. We also thank...
the following investigators and their site personnel who participated in these multicenter insulin lispro studies: A. de Leiva, Barcelona, Spain; A. Jara, P. Sanchez, Madrid, Spain; A. Karaskis, Tel-Hashomer, Israel; A. Scheen, Liege, Belgium; A. Tiengo, Padova, Italy; A. A. Motala, Durban, South Africa; A. H. Barnett, Greenberg, U.K.; A. J. Garber, Houston, Texas; A. J. Nankervis, Parkville, Australia; A. J. Spikker, Roemond, the Netherlands; A. P. Roberts, Adelaide, Australia; A. R. Daniels, Auckland, New Zealand; A. V. Greco, Roma, Italy; B. Charbonnel, Nantes, France; B. Goldberg, Miami, FL; B. Schulze-Schepplinung, Essen, Germany; B. O. Boehm, Ulm, Germany; B. R. Zimmerman, Rochester, Minnesota; C. Coscelli, Parma, Italy; C. Rosak, Frankfurt, Germany; C. D. Agardh, Lund, Switzerland; C. M. Kesämäki, Jyväskylä, Finland; C. D. Koop, Marburg, Germany; C. H. De Leeuw, Utrecht, the Netherlands; E. N. Janssens, Dordecht, the Netherlands; E. P. M. Hennekam, Groningen, the Netherlands; E. J. Halmos, Budapest, Hungary; T. A. Welborn, Bath, U.K.; J. P. Riou, Paris, France; J. P. Selam, Paris, France; J. P. Lauvaux, Brussels, Belgium; J. P. S. Soeldner, Sacramento, California; J. P. Cassar, Isleworth, U.K.; J. Beyer, Mainz, Germany; J. Cassar, Isleworth, U.K.; J. P. O’Hare, Bath, U.K.; J. P. Hou, Lyon, France; J. R. Attali, Bondy, France; J. R. Patsch, Innsbruck, Austria; J. S. Soel dryer, Sacramento, California; K. Federlin, Gelsen, Germany; K. H. H. Leopold, Frankfurt, Germany; K. E. Schroder, Duisburg, Germany; K. G. Petersen, Freiburg, Germany; K. M. Shaw, Cosham, U.K.; L. Blonde, New Orleans, Louisiana; L. Sacca, Napoli, Italy; L. Van Gaal, Edegem, Belgium; L. G. van Doorn, Tilburg, the Netherlands; L. I. Robertson, Durban, South Africa; M. C. Mengel, Orlando, Florida; M. Cohen, Caulfield, Australia; M. Frank, Hamburg, Germany; M. Hasibek, Munich, Germany; M. Mancini, Napoli, Italy; M. Muggio, Verona, Italy; M. Dreyer, Hamburg, Germany; M. A. Omer, Durban, South Africa; M. H. Borkenstein, Graz, Austria; M. H. Tan, Halifax, Canada; M. J. Prince, Indianapolis, Indiana; M. L. Reeves, Chattanooga, Tennessee; M. L. Spencer, Minneapolis, Minnesota; O. L. Lennicke, Oerbro, Switzerland; P. Diem, Bern, Switzerland; P. Drouin, Dommartinestol, France; P. Fossati, Lille, France; P. Salmela, Oulu, Finland; P. A. Boyce, Indianapolis, Indiana; P. B. Vilaette, Marseilles, France; P. F. Bougneres, Paris, France; P. J. Guillaumeaux, Paris, France; R. Astorga, Sevilla, Spain; R. Bouillion, Leuven, Belgium; R. Giorgino, Via Ennio, Italy; R. Landgraf, Munich, Germany; R. Lauro, Rome, Italy; R. Marechaud, Poitiers, France; R. Moore, Durban Natal, South Africa; R. Moore, Durban, South Africa; R. Vigneri, Catania, Italy; R. A. Guthrie, Wichita, Kansas; R. K. Mayfield, Charleston, West Virginia; R. M. Bergenstall, Minneapolis, Minnesota; S. Vaaler, Oslo, Norway; S. Weitzman, Beer-sheba, Israel; S. A. Arslanian, Pittsburgh, Pennsylvania; S. R. H. Sherlock, Sheffield, U.K.; T. Holsom, Budapest, Hungary; T. A. Welborn, Perth, Australia; V. A. Koviris, Helsinki, Finland; W. Lourens, Pretoria, South Africa; W. Sturmer, Wuerzburg, Germany; W. D. Alexander, Sidcup, U.K.; W. F. M. Mollentze, Bloemfontein, South Africa; W. K. Waldhauss, Lasaretsgasse, Austria.

References

Insulin lispro–induced antibody response

after long-term intraperitoneal insulin administration via implantable programmable insulin delivery systems. Diabetes Care 17:169–176, 1994