The Prevalence and Management of Diabetes in Thai Adults

The International Collaborative Study of Cardiovascular Disease in Asia

WICHAI AEKPLAKORN, PHD
RONALD P. STOLK, PHD
BRUCE NEAL, PHD
PAIBUL SURYAWONGPAISAL, PHD
VIRASAKDI CHONGSUVITWONG, PHD

SAYAN CHEEPUDOMWIT, MD
MARK WOODWARD, PHD
FOR THE INTERASIA COLLABORATIVE GROUP

OBJECTIVE — The aim of this study was to determine in Thai adults aged ≥35 years the prevalence and management of diabetes and the associations of diabetes with cardiovascular risk factors.

RESEARCH DESIGN AND METHODS — The International Collaborative Study of Cardiovascular Disease in Asia was a complex sample survey. Data from a structured questionnaire, brief physical examination, and blood sample were collected from 5,105 individuals aged ≥35 years (response rate 68%). Population estimates were calculated by applying sampling weights derived from the 2000 Thai census.

RESULTS — The estimated national prevalence of diabetes in Thai adults was 9.6% (2.4 million people), which included 4.8% previously diagnosed and 4.8% newly diagnosed. The prevalence of impaired fasting glucose was 5.4% (1.4 million people). Diagnosed diabetes, undiagnosed diabetes, and impaired fasting glucose were associated with greater age, BMI, waist-to-hip ratio, systolic blood pressure, total cholesterol, and serum creatinine levels. The majority of individuals with diagnosed diabetes had received dietary or other behavioral advice, and 82% were taking oral hypoglycemic therapy. Blood pressure–lowering therapy was provided to 67% of diagnosed diabetic patients with concomitant hypertension.

CONCLUSIONS — Diabetes is common in Thailand, but one-half of all cases are undiagnosed. Because diagnosed diabetes is likely to be treated with proven, low-cost, preventive therapies such as glucose lowering and blood pressure lowering, initiatives that increased diagnosis rates would be expected to produce substantial health benefits in Thailand.

From the 1Community Medicine Center, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand; the 2Institute for International Health, University of Sydney, Newtown, Australia; the 3Epidemiology Unit, Faculty of Medicine, Prince of Songkla University, Hat Yai, Thailand; and the 4Department of Medicine, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand.

Address correspondence and reprint requests to Associate Professor Bruce Neal, Institute for International Health, University of Sydney, P.O. Box 376, Newtown, New South Wales 2042, Australia. E-mail: bneal@iiah.usyd.edu.au.

Received for publication 30 April 2003 and accepted in revised form 25 June 2003.

Abbreviations: ED, enumeration district; InterASIA, International Collaborative Study of Cardiovascular Disease in Asia.

A table elsewhere in this issue shows conventional and Système International (SI) units and conversion factors for many substances.

© 2003 by the American Diabetes Association.

The Prevalence and Management of Diabetes in Thai Adults

Diabetes Care 26:2758–2763, 2003

Diabetes is a large and growing global health problem. It is projected that the number of individuals with diabetes will rise from an estimated 135 million in 1995 to a projected 300 million in 2025 (1). The greatest increase is projected for economically developing countries, such as Thailand, that already account for approximately two-thirds of all individuals with diabetes. In these countries, the number of people with diabetes is projected to increase almost threefold over this time period from 84 to 228 million (1). Diabetes greatly increases the risks of macro- and microvascular diseases (2), with similar proportional effects on disease risk observed in Western (3) and Asian (4) populations. As such, diabetes is likely to be an important determinant of the vascular disease burden in countries such as Thailand, where coronary heart disease has been the leading cause of death for over a decade (5). However, reliable national data about the prevalence of diabetes and glucose intolerance and the associations of these conditions with other determinants of cardiovascular disease in Thailand were not previously available. The International Collaborative Study of Cardiovascular Disease in Asia (InterASIA) (6) was a population-based survey of cardiovascular risk factors conducted in Thailand and China during 2000. In this study, we report comprehensive new data about the prevalence of diabetes, the associations of diabetes with cardiovascular risk factors, and the management of diabetes in Thailand.

RESEARCH DESIGN AND METHODS — InterASIA was conducted collaboratively between academic institutions in Australia, China, Thailand, and the U.S. (see ACKNOWLEDGMENTS). The Thai component of the study was approved by the Institutional Review Board at Mahidol University and by the local ethics committee at each of the collaborating centers in Thailand. All participants provided written informed consent, and the study was conducted in line with the Declaration of Helsinki and subsequent amendments. Data collection was conducted between May and October 2000.

Sample design
The sample design has been described in detail previously (6). In brief, one representative province was selected from each of the four main geographic regions of Thailand. From these provinces and Bangkok, a total of five representative ur-
han political districts (one from Bangkok and one from each chosen province) and four representative rural political districts (one from each chosen province) were selected. Up to six representative slum enumeration districts (EDs) and up to three representative non-slum EDs (each based on city blocks) were selected from each urban political district (except in Central Thailand where there were no slum EDs in the selected urban district). Up to three representative developing and three representative developed EDs (each based on villages) were selected from each rural district. Additionally, in North Thailand, the only region in which the selected rural district included undeveloped EDs, two representative undeveloped EDs were selected. At each level, selection of the units for sampling was based on their broad sociodemographic representativeness in the view of the chief Thai investigators with additional consideration given to the potential of the sites for participation in future longitudinal surveillance studies. The number of EDs of each development level selected from each district was dependent upon the size of the EDs. Within the selected EDs of a given development level in each district, the population aged ≥35 years was grouped by age (35–44, 45–54, 55–64, and ≥65 years) and sex, using lists compiled from local government registers of households. Individuals were then sampled at random from each age- and sex group, with the goal of recruiting a similar number of people from each with the proviso that only one individual be recruited from a household.

Data collection and measurements
For each individual who agreed to participate, trained study staff administered a structured questionnaire, performed a brief physical examination, and collected a blood sample. The questionnaire included questions about the prior diagnosis of diabetes by a physician and the use of glucose-lowering therapies. The examination included three measurements of blood pressure made according to American Heart Association recommendations (7), and measurement of body weight and height with participants wearing indoor clothes without shoes. BMI was calculated as weight in kilograms divided by height in meters squared.

Venous blood samples were obtained after an 8-h overnight fast. Samples were stored immediately over ice and centrifuged and separated on the day of collection. Sera were subsequently frozen and transferred on dry ice to a central laboratory (Faculty of Medicine, Ramathibodi Hospital, Bangkok), where they were stored at −70°C until analyzed. All analyses were performed using a dimension RxLHM clinical chemistry system (Dade Behring, Newark, NJ). Plasma glucose levels were measured using the hexokinase-glucose-6-phosphate dehydrogenase method (8). Serum total and HDL cholesterol were measured using enzymatic and homogeneous methods, respectively (9,10). The laboratory was standardized according to the criteria of the Centers for Disease Control and Prevention-National Heart, Lung, and Blood Institute Lipid Standardization Program (11).

Table 1—Mean fasting plasma glucose levels (mg/dl) overall and by age, sex, and area of residence

<table>
<thead>
<tr>
<th>Age-group</th>
<th>Men</th>
<th>Women</th>
<th>Urban</th>
<th>Rural</th>
<th>All</th>
</tr>
</thead>
<tbody>
<tr>
<td>All ages</td>
<td>101.0 ± 1.5</td>
<td>99.1 ± 1.4</td>
<td>106.6 ± 1.4</td>
<td>97.0 ± 1.1</td>
<td>100.0 ± 1.0</td>
</tr>
<tr>
<td>35–44 years</td>
<td>98.2 ± 2.6</td>
<td>93.0 ± 1.7</td>
<td>101.9 ± 2.0</td>
<td>92.5 ± 1.5</td>
<td>95.5 ± 1.6</td>
</tr>
<tr>
<td>45–54 years</td>
<td>101.7 ± 2.5</td>
<td>102.1 ± 2.5</td>
<td>108.4 ± 1.5</td>
<td>98.8 ± 1.8</td>
<td>101.9 ± 1.8</td>
</tr>
<tr>
<td>55–64 years</td>
<td>102.8 ± 2.6</td>
<td>105.7 ± 3.3</td>
<td>113.9 ± 3.5</td>
<td>100.3 ± 1.9</td>
<td>104.3 ± 2.2</td>
</tr>
<tr>
<td>≥65 years</td>
<td>105.7 ± 2.3</td>
<td>102.6 ± 2.3</td>
<td>109.4 ± 1.5</td>
<td>101.7 ± 2.0</td>
<td>104.0 ± 1.7</td>
</tr>
</tbody>
</table>

Data are means ± SEM.

Diabetes was defined as a fasting plasma glucose value 110–125 mg/dl in the absence of a previous diagnosis of diabetes. All other participants were defined as having normal glucose tolerance. Individuals in whom the diagnosis of diabetes was made before the age of 30 years and who started insulin treatment within 6 months after diagnosis were considered type 1 diabetic subjects.

Statistical methods
Estimates of mean ± SEM or percentage and risk factor levels in the overall population aged ≥35 years among age, sex, and rural/urban subgroups of that population were calculated. Comparisons of risk factor levels between population subgroups were performed using Student’s t tests for continuous variables and χ² tests for categorical variables. Age trends were investigated using linear regression models. All analyses allowed for the complex survey design using STATA 7.0 statistical software (StataCorp, College Station, TX): EDs were taken as primary sampling units, age and sex as strata, and weights were the population (13) to sample size ratios for each combination of age, sex, and type of ED.

RESULTS — There were 7,909 individuals invited to participate in the study, of whom 5,350 (68%) agreed and provided informed consent. Forty-five (0.8%) were subsequently excluded because their age was found to be <35 years on the day of assessment, and 200 (3.7%) were excluded because there was no assay of fasting plasma glucose available. The mean age, the female proportion, and the proportion with previously diagnosed diabetes did not differ between these 200 excluded individuals and the remainder of the eligible study population (P > 0.2). Among the 5,105 participants on whom all analyses were based, the data from the
questionnaire, anthropomorphic, and blood pressure measurements were >99% complete. The response rate to invitation to participate in the study was higher in rural than urban areas (81 vs. 61%, P < 0.001) and was higher among women than men (77 vs. 57%, P < 0.001) but did not significantly differ by age-group (P = 0.6).

Mean fasting plasma glucose levels
The estimated overall mean fasting plasma glucose level for Thai adults aged ≥35 years was 100.0 ± 1.0 mg/dl (Table 1). Fasting plasma glucose was slightly higher in men (101.0 mg/dl) compared with women (99.1 mg/dl, P = 0.4) and substantially greater in the residents of urban (106.6 mg/dl) compared with rural (97.0 mg/dl, P < 0.001) areas (Table 1). Levels were higher in older compared with younger individuals peaking in the 55- to 64-year age-group (Table 1). The graphs in Fig. 1 show that the estimated population distributions of fasting plasma glucose are shifted to the right for men, urban populations, and older individuals.

Prevalence of diabetes and impaired fasting glucose
The estimated overall prevalence of diabetes in Thai adults aged ≥35 years was 9.6 ± 0.7% (known diabetes, 4.8 ± 0.5%; newly diagnosed diabetes, 4.8 ± 0.5%). An estimated additional 5.4 ± 0.6% had impaired fasting glucose levels (Table 2). The mean duration of disease in those with known diabetes was 6.4 ± 0.5 years, and the prevalence of type 1 diabetes was estimated to be 0.2 ± 0.2%. Overall prevalence rates of diabetes did not significantly differ between sexes (P = 0.6) but were greater in urban compared with rural areas (P = 0.01) and were higher among older age-groups (P = 0.01). The proportion of diabetes that was diagnosed did not significantly differ between women and men (53 vs. 47%, P = 0.4) or between urban and rural areas (57 vs. 46%, P = 0.1), but was substantially greater for older people than younger people (63% for ≥55 years vs. 37% for ≥54 years, P = 0.01) (Table 2).

Based on the findings of the 2000 Thai population census (13), the number of Thai adults aged ≥35 years with diabetes was estimated to be 2.4 ± 0.2 million. This estimate comprises 1.1 ± 0.1 million men and 1.3 ± 0.2 million women, with 1.4 ± 0.2 million residing in rural areas and 1.0 ± 0.2 million in urban areas. The numbers of people with known diabetes, newly diagnosed diabetes, and impaired fasting glucose were estimated to be 1.2 ± 0.1, 1.2 ± 0.1, and 1.4 ± 0.1 million, respectively.

Association of diabetes and impaired fasting glucose with cardiovascular risk factors
In general, the levels of cardiovascular risk factors progressively worsened across the four population groups defined as “normal glucose tolerance,” “impaired fasting glucose,” “newly diagnosed diabetes,” and “known diabetes” (Table 3). The principal exceptions were the proportion of individuals reporting current smoking or regular alcohol consumption (both of
which trended in the opposite direction) and diastolic blood pressure levels, which were greatest in the group with impaired fasting glucose.

Treatment patterns in patients with diabetes

The majority of patients with known diabetes had been advised to modify their diet (85.1 ± 3.4%), exercise more (78.7 ± 4.0%), and lose weight (63.8 ± 4.4%). In addition, 81.9 ± 4.4% were using oral glucose-lowering drugs, although insulin was used by only 2.8 ± 1.0%. Other treatments such as Chinese medicines or herbs were used by 31.2 ± 4.1%. One-third (31.3 ± 4.3%) reported that a doctor had told them that diabetes had affected their kidneys. Of individuals with diabetes and concurrent hypertension (previous diagnosis, systolic blood pressure ≥90 mmHg), 66.5 ± 4.5% were receiving prescribed blood pressure–lowering therapy.

CONCLUSIONS — The InterASIA study has clearly demonstrated that diabetes and impaired fasting glucose are common in Thai adults and that these conditions are associated with adverse levels of cardiovascular risk factors. The estimated prevalence of diabetes and impaired fasting glucose and the cross-sectional associations of these conditions with cardiovascular risk factors are analogous with those of industrialized Western populations such as the U.S. (14) and Australia (15). The rise to Western levels in the prevalence of diabetes and associated cardiovascular risk factors in Thailand (16–18) and other newly industrializing countries of the Asia-Pacific region (19,20) appears to be largely attributable to changes in sociodemographic factors (21), in particular the greater age of the population (5,13), the increased proportion living in an urban environment (22), and mounting levels of obesity (23). Because each of these is likely to rise still further, the burden of diabetes-related diseases in Thailand and the Asia-Pacific region will continue to increase for at least the next few decades (1).

The InterASIA study was designed to provide reliable nationwide estimates of adult cardiovascular risk factor levels and incorporated thorough staff training, monitoring, and standardization of practical procedures, including central assays of blood glucose levels. The large size of the study ensured that the overall estimates of risk factor levels were precise. Similarly, the rigorous sampling procedure, the good response rates, and the statistical weighting process should have minimized any biases due to nonparticipation or missing data. Economic and

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Impaired fasting glucose</th>
<th>Newly diagnosed diabetes</th>
<th>Known diabetes</th>
<th>Total diabetes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Men</td>
<td>6.1 ± 0.8</td>
<td>5.0 ± 0.8</td>
<td>4.3 ± 0.6</td>
<td>9.3 ± 1.0</td>
</tr>
<tr>
<td>Women</td>
<td>4.8 ± 0.8</td>
<td>4.7 ± 0.5</td>
<td>5.3 ± 0.8</td>
<td>9.9 ± 0.9</td>
</tr>
<tr>
<td>Urban</td>
<td>7.6 ± 1.0</td>
<td>5.2 ± 0.5</td>
<td>6.9 ± 0.9</td>
<td>12.1 ± 1.0</td>
</tr>
<tr>
<td>Rural</td>
<td>4.4 ± 0.6</td>
<td>4.6 ± 0.7</td>
<td>3.8 ± 0.6</td>
<td>8.4 ± 0.9</td>
</tr>
<tr>
<td>35–44 years</td>
<td>4.2 ± 0.9</td>
<td>3.2 ± 0.6</td>
<td>1.6 ± 0.5</td>
<td>4.9 ± 0.7</td>
</tr>
<tr>
<td>45–54 years</td>
<td>7.3 ± 1.2</td>
<td>6.0 ± 1.1</td>
<td>3.8 ± 0.6</td>
<td>9.8 ± 1.2</td>
</tr>
<tr>
<td>55–64 years</td>
<td>5.4 ± 1.1</td>
<td>5.0 ± 0.9</td>
<td>9.0 ± 1.0</td>
<td>14.0 ± 1.6</td>
</tr>
<tr>
<td>≥65 years</td>
<td>5.4 ± 1.0</td>
<td>6.7 ± 1.3</td>
<td>10.4 ± 1.7</td>
<td>17.2 ± 1.1</td>
</tr>
<tr>
<td>Overall</td>
<td>5.4 ± 0.6</td>
<td>4.8 ± 0.5</td>
<td>4.8 ± 0.5</td>
<td>9.6 ± 0.7</td>
</tr>
</tbody>
</table>

Data are means ± SEM.

<table>
<thead>
<tr>
<th>Risk factor</th>
<th>Normal glucose tolerance</th>
<th>Impaired fasting glucose</th>
<th>Newly diagnosed diabetes</th>
<th>Known diabetes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean age (years)</td>
<td>49.9 ± 0.9</td>
<td>52.0 ± 1.0</td>
<td>54.0 ± 1.3</td>
<td>58.6 ± 1.3</td>
</tr>
<tr>
<td>Proportion male (%)</td>
<td>47.9</td>
<td>54.0</td>
<td>49.6</td>
<td>43.1</td>
</tr>
<tr>
<td>Mean BMI (kg/m²)</td>
<td>23.8 ± 0.2</td>
<td>25.2 ± 0.5</td>
<td>25.4 ± 0.5</td>
<td>25.4 ± 0.4</td>
</tr>
<tr>
<td>Waist-to-hip ratio</td>
<td>0.87 ± 0.01</td>
<td>0.90 ± 0.01</td>
<td>0.91 ± 0.01</td>
<td>0.94 ± 0.01</td>
</tr>
<tr>
<td>Mean systolic blood pressure (mmHg)</td>
<td>118.4 ± 0.7</td>
<td>126.3 ± 1.5</td>
<td>126.6 ± 1.7</td>
<td>127.2 ± 1.8</td>
</tr>
<tr>
<td>Mean diastolic blood pressure (mmHg)</td>
<td>75.3 ± 0.5</td>
<td>80.3 ± 1.0</td>
<td>78.9 ± 1.0</td>
<td>76.0 ± 1.0</td>
</tr>
<tr>
<td>Mean total cholesterol (mg/dl)</td>
<td>197.9 ± 2.1</td>
<td>208.6 ± 4.2</td>
<td>213.9 ± 5.1</td>
<td>224.7 ± 4.7</td>
</tr>
<tr>
<td>Mean HDL cholesterol (mg/dl)</td>
<td>44.8 ± 0.7</td>
<td>44.6 ± 1.3</td>
<td>40.9 ± 0.8</td>
<td>41.7 ± 1.1</td>
</tr>
<tr>
<td>Mean serum creatinine (mg/dl)</td>
<td>0.92 ± 0.01</td>
<td>0.96 ± 0.02</td>
<td>0.96 ± 0.03</td>
<td>1.11 ± 0.06</td>
</tr>
<tr>
<td>Regular drinker of alcohol (%)</td>
<td>35.7</td>
<td>40.6</td>
<td>33.3</td>
<td>20.5</td>
</tr>
<tr>
<td>Current smoker (%)</td>
<td>25.7</td>
<td>25.9</td>
<td>22.5</td>
<td>12.1</td>
</tr>
<tr>
<td>Family history of diabetes (%)</td>
<td>18.0</td>
<td>18.5</td>
<td>24.8</td>
<td>38.4</td>
</tr>
</tbody>
</table>

Data are means ± SEM, unless otherwise indicated.
levels of obesity, de
of glucose intolerance was high, although
age was consistent with previous studies
sive rise in the prevalence of diabetes with
urban-rural variation (6), but the progres-
contribute substantially to the observed
areas is also usual in countries of the Asia-
sexes is typical (1), and greater prevalence
rural areas and among older people com-
pared with younger people. Comparabil-
ity in the prevalence of diabetes across
es is typical (1), and greater prevalence of
diabetes in urban compared with rural
areas is also usual in countries of the Asia-
Pacific region (22). Differences in the age
and sex structure of the populations living
in urban and rural areas did not appear to
contribute substantially to the observed
urban-rural variation (6), but the progres-
see rise in the prevalence of diabetes with
age was consistent with previous studies
(1,20,22). It is of note that the prevalence of
began was high, although
levels of obesity, defined according to the
current World Health Organization
guidelines, were relatively low.

Undiagnosed diabetes was common,
was associated with worse levels of risk
factors, and is an established determinant of
vascular disease (24). The provi-
sion of proven preventive therapies to
such individuals would be likely to avert
many premature cardiovascular events
(24,25). InterASIA clearly demonstrated
that the Thai health system could rou-
tinely provide the majority of known dia-
betic individuals with behavioral advice,
hypoglycemic therapy, and blood pres-
sure-lowering therapy if there is concur-
rent high blood pressure. As such,
increasing the proportion of diabetes that
is diagnosed, perhaps through opportu-
nistic screening of high-risk individuals,
might be an appropriate and relatively low-
cost means of addressing the growing
diabetes-related disease burden in Thailand.

Acknowledgments — The InterASIA study
was funded by a contractual agreement be-
tween Tulane University (LA) and Pfizer (NY).
Two researchers employed by Pfizer, Inc. were
members of the Steering Committee that de-
sign the study. However, the study was con-
ducted, analyzed, and interpreted by the
investigators independent of the sponsor.

InterASIA Collaborative Group consisted of
Dongleng Gu, Xiufang Duan, Guanyong
Huang, Xiguai Wu, Yuelong Ma, Ling Yu, Ying-
nai Chen, Ligui Wang, Cailiang Yao, Lihua
Xu, Ping Wang, Fuqiang Chen, Jianjing Mo,
Xianping Wu (from China), Pahul Surya-
rongpaisal, Sayan Cheepudomwit, Porntip
Loelkla, Piyaimit Sritrha, Poolsook Sariya-
porn, Pairoa Pongchoke, Somboon Jayavat,
Charermrtri Nantawan, Vachira Kasikoson,
Somkam Thanthiwiwat, Penprapa Siviroj, Jirap-
orn Suwanteerangkul, Pyatit Tasananavit, Pat-
tapong Kessomboon, Sujiphan Horas,
Virasakdi Chongsuvivatwong, Tada Yipinotoi,
Nualta Apakapukul, Walla Jirathanapras,
Woravut Jintapakorn, Vongsavat Kosalwatt,
Attitada Boonpradern, Amornrat Wong-
chananapat, Chayanit Wanijukul (Thailand);
Jiang He, Paul Whelton, Lydia Bazzano, Jing
Chen, Paul Muntner, Kristi Reynolds, Xue Xin
(U.S.); Neil Chapman, Sam Colman, Stephen
MacMahon, Bruce Neal, Ronald Stoll, and
Mark Woodward (Australia). The Steering
Committee consisted of Jiang He, Paul Whel-
ton, Dale Glasser, Dongleng Gu, Stephen
MacMahon, Bruce Neal, Rajiv Patni, Robert
Reynolds, Pahul Suryarongpaisal, Xiguai Wu,
Xue Xin, and Xin-Hua Zhang.

References

1. King H, Aubert R, Herman W: Global
Burden of Diabetes, 1995–2025: preva-
ance, numerical estimates, and projec-
2. Saydah S, Eberhardt M, Loria C, Brancati
F: Age and the burden of death attribut-
able to diabetes in the United States. Am J
Epidemiol 156:714–719, 2002
3. Kuller L, Velentgas P, Barzilay J,
Beaufamp N, O’Leary D, Savage P: Dia-
betes mellitus: subclinical cardiovascular
disease and risk of incident cardiovascular
disease and all-cause mortality. Artio-
4. Asia Pacific Cohort Studies Collaboration:
The effects of diabetes mellitus on the
risks of major cardiovascular diseases and
death in the Asia-Pacific region. Diabetes
Care 26:360–366, 2002
5. Division of International Health, Bureau
of Health Policy and Planning, Office of
the Permanent Secretary, Ministry of Pub-
lic Health: Thailand Health Profile 1997–
1998: Bangkok, Printing Press, Express
Transportation Organization, 2000
B, Suryawongpaisal P, Whelton P,
Woodward M, for the InterASIA Collabo-
rative Group: Cardiovascular risk factor
levels in urban and rural Thailand: results
from the International Collaborative Study
of Cardiovascular Disease in Asia

7. Frohlich E, Grim C, Labarde D: Recom-
mendations for human blood pressure de-
termination by sphygmomanometers. Hyperte-
inon 11:210A–222A, 1988
8. Kunst A, Draeger B, Ziegennhorn J: UV-
methods with hexokinase and glucose-6-
phosphate dehydrogenase. In Methods of
Durfeld, Verlag Chemie, 1983, p. 163–172
measurement of total cholesterol in se-
10. Warnick G, Wood P: National Choles-
sterol Education Program recommenda-
tions for measurement of high-density
lipoprotein cholesterol: executive sum-
mury. The National Cholesterol Educa-
tion Program Working Group on Lipoprotein Measurement. Clin Chem 41:
1427–1433, 1995
Centers for Disease Control–National
Heart, Lung, and Blood Institute Lipid
Standardization Program. Clin Lab Med
12. The Expert Committee on the Diagnosis
and Classification of Diabetes Mellitus:
Report of the Expert Committee on the
Diagnosis and Classification of Diabetes
13. Statistical Data Bank and Information Dis-
semination Division: 2000 Population and
Housing Census (Advance Report). Bangkok,
National Statistical Office, Office of the
Prime Minister, 2001
14. Harris MI, Flegal KM, Cowie CC, Eber-
hardt MS, Goldstein DE, Little RR, Wied-
meyer HM, Byrd-Holt DD: Prevalence of
diabetes, impaired fasting glucose, and
impaired glucose tolerance in U.S. adults:
the Third National Health and Nutrition
Examination Survey 1988–1994. Dia-
betes Care 21:518–524, 1998
15. Dunstan DW, Zimmis PW, Welborn TA,
De Courten MP, Cameron AJ, Sircce RA,
Dwyer T, Colaguin S, Jolley D, Knuiman
M, Atkins R, Shaw JE: The rising preva-
ence of diabetes and impaired glucose
tolerance: the Australian Diabetes, Obe-
sity and Lifestyle Study. Diabetes Care 25:
829–834, 2002
16. Tasananavit P, Klungboonkrong V,
Chirawatkal A, Bhuripanyo K, Mannon-
tri A, Chitanondh T, Yipinotoi P: Preva-
lence of coronary heart disease and major
cardiovascular risk factors in Thailand. Int
17. National Statistics Office of Thailand: Re-
Bangkok, National Statistics Office of
Thailand, Office of the Prime Minister,
2000
18. Sritara P, Cheepudomwit S, Chapman N,
Woodward M, Kostichaiwa C, Tunlaya-

2762

