Evolution of Analytical Performance in Portable Glucose Meters in the Last Decade

Philip Boehme, MD
Michele Floriot, MD
Marie-Aude Sirveaux, MD
Danielle Durain, RN

Olivier Ziegler, MD, PhD
Pierre Drouin, MD
Bruno Guerci, MD, PhD

OBJECTIVE — To assess and compare the technical accuracy of portable glucose meters during the last decade.

RESEARCH DESIGN AND METHODS — One thousand preprandial (pre) and postprandial (post) capillary whole-blood glucose values measured with meters owned mainly by diabetic patients were compared with a single laboratory method yearly from 1989 to 1999. A total of 21,950 capillary measurements and their corresponding laboratory reference values were analyzed at our clinic.

RESULTS — The lowest mean absolute difference was found in 1989 (pre: 2 ± 22 mg/dl, post: 9 ± 31 mg/dl) (mean ± SD). The highest mean absolute difference was observed in 1993 (pre: 31 ± 33 mg/dl) and 1996 (post: 50 ± 35 mg/dl). The highest mean relative deviation was observed in 1990 (pre: 16.4%) and 1996 (post: 20.6%). The highest percentage of readings that were within a 5% deviation limit were observed in 1998 (pre: 44.5%) and in 1997 (post: 36.7%). Based on blood glucose levels within ±5 and ±10% of laboratory values, the technical accuracy of meters was similar for 1989 and 1999 (P = 0.27 and 0.52, respectively). The percentage of pre values in zone A of Clarke’s error grid analysis was >90% in 1989, 1997, 1998, and 1999.

CONCLUSIONS — The analytical performance of glucose meters decreased between 1990 and 1996 but was restored between 1997 and 1999. Nevertheless, our data suggest that the technical accuracy of glucose meters has not significantly improved during the last decade. Complementary studies taking into account the preanalytical improvements of the recent meters, as well as their calibration method, appear necessary.

Diabetes Care 26:1170–1175, 2003

Self-monitoring of blood glucose is now considered to be an important tool in the management of insulin-treated diabetes (1). Its importance has increased since Diabetes Control and Complications Trial results have shown that proper control of glucose levels is associated with a reduced risk of microvascular disease in type 1 diabetes (2). Portable glucose meters are widely used in type 2 diabetes, although their contribution to blood glucose improvement has not been established (3). In the last two decades, results obtained with glucose meters appear to have become more reproducible and accurate. The meters have also become smaller, faster for blood glucose analysis, and easier to use (4,5). Although there are some studies concerning user error (6,7), information relating to the evolution of analytical error appears limited (8). To determine whether the analytical accuracy has changed in relation to the global improvement of meter performances, we have prospectively compared, at our clinic and under medical control, 1,000 preprandial and postprandial capillary blood glucose measures using various portable meters on a yearly basis between 1989 and 1999 in comparison to a single reference method (RM).

RESEARCH DESIGN AND METHODS — In our Department of Diabetes, most of the diabetic patients (mainly type 1 and type 2 diabetes) benefit from an annual check-up during which each patient’s device is evaluated in a standard manner. We also conduct a yearly check on the devices employed in our inpatient and outpatient clinics for diabetes. Other examinations, including an electrocardiogram, leg Doppler, and fluorescein angiography are also carried out on the same day. To evaluate the technical accuracy of each home blood glucose meter (HB), pre- and postlunch (1.5 h after the meal) meter readings were compared with the results of a RM. All capillary blood samples were taken at room temperature (~20°C) after verification, calibration, and washing of the device by one of the experienced nurses working at our unit. Each month, these nurses were trained to use newly released devices coming onto the market. All patients were asked to wash and dry their hands with warm water, after which a finger prick was made with a standard auto-lancer, and a suitable drop of blood was applied to the test strip according to the manufacturer’s instructions. Additional blood derived from the same capillary sample was collected into a microtube containing fluoride and immediately brought to the local laboratory, where a glucose oxidase method was used to determine the plasma glucose concentration. Laboratory analysis was performed after centrifugation (5 min at 18,000g) in a microcentrifuge. Glucose in the supernatant fluid was assayed with a reagent...
Table 1—Yearly absolute means and relative deviations of the results obtained with glucose devices with respect to the reference value (RM – HB), percentages of values within ±5% deviation from the reference value, and percentage of the total samples in zone A of the EGA

<table>
<thead>
<tr>
<th>Year of study</th>
<th>Samples (n)</th>
<th>Preprandial glycemias</th>
<th>Postprandial glycemias</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean ± SD (mg/dl)</td>
<td>Relative deviation (%)</td>
<td>Values within ±5% (%)</td>
</tr>
<tr>
<td>1989</td>
<td>997</td>
<td>2 ± 22</td>
<td>11.8</td>
</tr>
<tr>
<td>1990</td>
<td>998</td>
<td>22 ± 27</td>
<td>16.4</td>
</tr>
<tr>
<td>1991</td>
<td>992</td>
<td>24 ± 25</td>
<td>14.8</td>
</tr>
<tr>
<td>1992</td>
<td>998</td>
<td>24 ± 29</td>
<td>14.5</td>
</tr>
<tr>
<td>1993</td>
<td>999</td>
<td>31 ± 33</td>
<td>15.5</td>
</tr>
<tr>
<td>1994</td>
<td>997</td>
<td>24 ± 30</td>
<td>14.4</td>
</tr>
<tr>
<td>1995</td>
<td>994</td>
<td>24 ± 29</td>
<td>13.2</td>
</tr>
<tr>
<td>1996</td>
<td>1,000</td>
<td>29 ± 27</td>
<td>16.1</td>
</tr>
<tr>
<td>1997</td>
<td>1,000</td>
<td>3 ± 16</td>
<td>7.8</td>
</tr>
<tr>
<td>1998</td>
<td>1,000</td>
<td>7 ± 14</td>
<td>7.0</td>
</tr>
<tr>
<td>1999</td>
<td>1,000</td>
<td>15 ± 14</td>
<td>9.9</td>
</tr>
<tr>
<td>Total</td>
<td>10,975</td>
<td>19 ± 24</td>
<td>13.2</td>
</tr>
</tbody>
</table>

*χ² test between 1989 and 1999, P > 0.05.

RESULTS — A total of 21,950 of the 22,000 previous meters readings were analyzed because some of the measurements were indicated as “low” or “high” by the devices. The mean total pre glucose value was 142 ± 62 mg/dl (range 25–502) with the HB and 160 ± 75 mg/dl (range 10–668) with the RM. The mean total post value was 200 ± 69 mg/dl (range 25–583) with the HB and 232 ± 82 mg/dl (range 10–698) with the RM.

Intraclass correlation coefficients for every year were all >0.80. This coefficient reached 0.95 or higher for the following years: 1997 (0.965, 95% CI 0.964–0.972), 1998 (0.976, 0.973–0.979), and 1999 (0.973, 0.969–0.976) for the pre values; and 1997 (0.963, 0.954–0.967), 1998 (0.978, 0.975–0.980), and 1999 (0.964, 0.959–0.980) for the post values.

The differences between RM and HB are shown for each year in Table 1. The mean difference for the entire period of the study was 19 ± 24 mg/dl for the pre values and 32 ± 30 mg/dl for the post values. For the pre values, the highest mean difference was observed in 1993 (31 ± 33 mg/dl). In the post state, the highest mean difference was observed in 1996 (50 ± 35 mg/dl).

Our analysis exhibited considerable variations from the RM, as judged by calculations of absolute variation, with maximum deviations seen in 1990 (pre: 16.4%) and 1996 (post: 20.6%) (Table 1). Conversely, minimal absolute variations were observed in 1997 (post: 8.0%) and in 1998 (pre: 7.0%; post: 8.0%).

Bland and Altman (10) graphic presentations from 1989 and 1999 (pre and post values) are shown in Fig. 1. The dispersion of plots in 1989 was higher than that in 1999. This observation means that the maximum difference was higher for 1989. Conversely, the mean global difference was closer to zero in 1989, indicating the smaller mean difference between
HB and RM reported for this year for both pre and post values (2 and 9 mg/dl, respectively) compared with the results from 1999 (15 and 20 mg/dl) (Table 1). For the other years, as well as 1989 and 1999, the dispersion of plots was not constant and increased with the glucose level (data not shown).

The percentage of pre and post values within ±5 and ±10% are shown for each year in Table 1 and Fig. 2. For pre values, the three most favorable percentages for blood glucose values within a ±5% deviation from the reference values were found in 1998 (44.5%), 1997 (41.3%), and 1989 (27.0%). With respect to the ±5 and ±10% levels in the pre state, there was no significant difference between the percentage for 1989 and 1999 (P = 0.27 and 0.52, respectively). In the post state, the best outcome was obtained in 1997 (36.7%), followed by 1998 (32.4%) and 1989 (32.0%). The least favorable results were obtained in 1996, with 13.2% pre and 4.6% post values within the 5% deviation range. The largest number of values within ±10% of the RM was observed in 1998, both for the pre (77.1%) and post values (69.0%). Nevertheless, 1996 was the year with least favorable results because only 15.3% of

Figure 1—Bland and Altman graphic presentations from 1989 and 1999 for preprandial and postprandial values. Black lines represent mean of the differences. Dashed lines represent mean ± 1.96 SD.

Figure 2—Yearly percentages of values within 5 and 10% and >10% deviation from the reference value.
the pre and 12.6% of the post values were within the 10% level.

For the pre values, most of the years studied showed that >70% of the measured capillary blood glucose values fell into zone A of the EGA, except in 1996 (67.5%) (Table 1 and Fig. 3). For the post values, percentages of plots in zone A were not statistically different between 1989 and 1999 (P = 0.32). The years with least favorable results included 1993–1996. None of the values obtained from the glucose meters (except for one pre value in 1995) corresponded to zone E. Only a small number of values each year corresponded to zone D (pre: from 0.40% in 1998 to 2.71% in 1995; post: from 0.01% in 1998 to 2.89% in 1996), irrespective of the level of glycemia. Although 1989 was associated with a high percentage of pre values in zone A, 1.91% of plots fell in zone D in the pre state. Conversely, in relation to the post values, the percentage of plots in zone D did not overlap 0.40% from 1997 to 1999. The percentage of post values in zone D remained <0.40% for 1989, 1997, 1998, and 1999 (Fig. 3).

CONCLUSIONS — About 22,000 capillary blood glucose measurements, comprising ~1,000 annual pre- and postprandial samples, were analyzed between 1989 and 1999 to compare the results obtained with glucose meters and with a time-stable reference laboratory method. We found that the accuracy of the meters decreased dramatically between 1990 and 1996 and that their performance recovered after 1997. To assess technical accuracy, we have intentionally not used the Spearman’s correlation test because the r coefficient measures the extent to which two sets of data fit a linear relationship, but not the consistency between data (5). One of the effective procedures for measuring agreement between methods is intraclass correlation (13). Moreover, Bland and Altman’s (10) graphic presentation makes it easier to evaluate the accuracy of these methods and to assess the magnitude of disagreement by examining the distribution of differences.

Estimation of the percentage of HB values that fall within ±5 and ±10% was also appropriate because it allowed the same classification, irrespective of the year and the glucose level (1). Finally, the EGA elaborated by Clarke et al. (12) was a method that directly related to patients in terms of clinical management.

Using these validated comparison methods (9,10,12,14), we showed that the performance of glucose meters from years 1997 to 1999 improved substantially compared with those from 1990 to 1996. In contrast, meter devices in 1989 were almost as accurate as those from 1997 to 1999. With the Bland and Altman approach, our data confirmed the slight superiority of 1989 and 1997 to 1999, as well as demonstrated meter inaccuracy from 1990 to 1996. Moreover, we found that accuracy was significantly better in 1998 than in 1999 with regard to the 5 and 10% deviation from the RM, especially for the preprandial values. EGA analysis showed similar results, except for the number of preprandial, but not postprandial, values that fall in zone D, indicating a slight superiority in the last 3 years of the study.

The present study is the first to report large numbers of glucose monitor readings. Brunner et al. (4) reported a study with 1,794 mean readings, but not over a long period of follow-up.

All the studies relating to accuracy and precision of home blood glucose meters were performed in a cross-sectional manner (4,8,15–18). Our results suggest that the older glucose meters from the late 1980s have similar accuracy to the newer ones. In the early 1990s, Bain et al. (19) showed that three of the main devices exhibited variations from the RM. Others showed that recent meters have better performances than the older ones (8). These authors reported that four new meters yielded nearly 50% of values that were within ±5%, while two of older meters gave a worse percentage (32.5 and 33.5%) in this area. Conversely, in their study, one of the older meters was more accurate than two from the newer generation.

Devices that were tested in 1989 and purchased before that year had a more stable accuracy than those purchased in 1990. This could be an explanation for the observed decrease in analytical per-
formance. Unfortunately, we did not record all the names of the meters used in this study. Although we have no information on the date of purchase and the trade name for each device, we cannot eliminate the possibility that technical accuracy decreased between 1990 and 1996 due to the aging of meters. However, there is no longitudinal study to demonstrate that the analytical performance of meters decreased with time or frequency of use. This would be interesting with regard to the reliability of self-monitoring frequency with HbA1c improvement (2,10,20).

Our study includes other limitations. First, we compared capillary whole blood with capillary plasma using the glucose RM. It is known that capillary whole-blood glucose is lower than the venous plasma equivalent (21). Thus, during the last decade, the majority of glucose meters were calibrated based on a capillary whole-glucose technique, such as YSI (22). However, some manufacturers, like Lifescan or Abbott/Medisense, recently changed their calibration method (from capillary whole blood to capillary plasma) (22). Moreover, some manufacturers, like Lifescan or Abbott/Medisense, recently changed their calibration method (from capillary whole blood to capillary plasma) during the study period in France (after 1995 and 1998, respectively) and it was difficult to take this modification into account during the study. This can nevertheless explain the relative improvement noted in the last years of the study. We also did not consider biological interference, such as the hematocrit level (23,24), glucose levels (25), bilirubinemia (26), or fluorescent (27). All these factors should modify the values of glucose meters. However, the interest of the present data includes some inaccuracies, similar longitudinal surveys taking into account the technological progress, as well as the calibration method of the newer glucose meters, appear necessary.

In summary, our data showed that the accuracy of glucose meters was significantly decreased between 1990 and 1996 but that their performance recovered and slightly improved from 1997 to 1999 in comparison to the late 1980s. This improvement remained insufficient with regard to most of the official goals of meter performance. However, since our study includes some inaccuracies, similar longitudinal surveys taking into account the technological progress, as well as the calibration method of the newer glucose meters, appear necessary.

Acknowledgments—This article is dedicated to Professor Pierre Drouin, deceased 21 October 2002.

References
17. Fanghanel G, Sanchez-Reyes L, Morales...