Correlation Between Midthigh Low-Density Muscle and Insulin Resistance in Obese Nondiabetic Patients in Korea

Dolmi Kim, MD
Suyoun Nam, MD, PhD
Chulwoo Ahn, MD, PhD
Kyungwook Kim, MD
Soojee Yoon, MD
Junuh Kim, MD
Bongsoo Cha, MD, PhD
Sungki Lim, MD, PhD
Kyungrae Kim, MD, PhD
Hyunchul Lee, MD, PhD
Kaprum Huh, MD, PhD

OBJECTIVE — We investigated the link between lipid-rich skeletal muscle, namely low-density muscle, and insulin resistance in Korea.

RESEARCH DESIGN AND METHODS — Abdominal adipose tissue areas and midthigh skeletal muscle areas of 75 obese nondiabetic subjects (23 men, 52 women; mean age ± SD, 41.9 ± 14.1 years) were measured by computed tomography (CT). The midthigh skeletal muscle areas were subdivided into low-density muscle (0 to +30 Hounsfield units) and normal-density muscle (+31 to +100 Hounsfield units). The homeostasis model assessment (HOMA) score was calculated to assess whole-body insulin sensitivity.

RESULTS — The abdominal visceral fat area and the midthigh low-density muscle area were found to be well correlated with the HOMA score (r = 0.471, P < 0.01 and r = 0.513, P < 0.01, respectively). The correlation between low-density muscle area and insulin resistance persisted after adjusting for BMI or total body fat mass (r = 0.451, P < 0.01 and r = 0.522, P < 0.01, respectively) and even after adjusting for abdominal visceral fat area (r = 0.399, P < 0.01).

CONCLUSIONS — The midthigh low-density muscle area seems to be a reliable determinant of insulin resistance in Korean obese nondiabetic patients.

Diabetes Care 26:1825–1830, 2003

The close relationship between abdominal adiposity and insulin resistance has been described in previous studies (1–3). Moreover, visceral adipose tissue is well recognized to be significantly related to insulin resistance of obese type 2 diabetic patients and even patients with normal weight (4,5).

Recently, the role of intramuscular lipid components in insulin resistance became the subject of attention (6–8). Low-density muscle represents lipid-rich skeletal muscle, which includes fat components between and inside the muscle fibers. Many other studies have already shown that low-density muscle is significantly related to insulin resistance in obese type 2 diabetic patients. However, this relation has not been investigated in Korea, where the prevalence of both obesity and diabetes is relatively low. Therefore, the current study was undertaken to investigate the potential link between low-density muscle and insulin resistance in the Korean population.

RESEARCH DESIGN AND METHODS

Subjects
A total of 75 subjects (23 men, 52 women; mean age ± SD, 41.9 ± 14.1 years) with sedentary lifestyle were enrolled in this cross-sectional study. Of these, 69 patients were obese (BMI > 25 kg/m²) and the remainder were overweight (BMI 23–25 kg/m²), according to the revised definition of adult obesity in the Asian-Pacific race proposed at the Hong Kong meeting (9). A total of 33 premenopausal women and 19 women with natural menopause (mean age ± SD, 31.2 ± 7.8 and 54.8 ± 7.9 years, respectively) were included. Subjects were divided into a normal glucose tolerance group (n = 46) and an impaired glucose tolerance group (n = 29), according to the results of an oral glucose tolerance test (OGTT). Individuals with a history of or evidence of hypertension, any type of diabetes, or cardiovascular disease were excluded. Individuals with hyperlipidemia (concentration of plasma total cholesterol > 350 mmol/l or concentration of triacylglycerol > 300 mmol/l) were excluded. Those taking any kind of oral or parenteral medications were excluded, and none of our subjects engaged in any regular exercise. The clinical and biochemical characteristics of the subjects are described in detail in Table 1. The study protocol was approved by the Yonsei University College of Medicine ethical committee, and informed consent was obtained from each subject.

Anthropometric parameters
Body weight and height were measured in the morning, without clothing and shoes. BMI was calculated as body weight in kilogram divided by square body height in meter.
Muscle fat content as index of insulin resistance

Table 1—Clinical characteristics

<table>
<thead>
<tr>
<th></th>
<th>Men (n = 75)</th>
<th>Women (n = 52)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sex</td>
<td>23:52</td>
<td>23</td>
</tr>
<tr>
<td>Age (years)</td>
<td>41.9 ± 14.1</td>
<td>46.6 ± 13.6</td>
</tr>
<tr>
<td>Body weight (kg)</td>
<td>78.6 ± 14.6</td>
<td>87.9 ± 19.1</td>
</tr>
<tr>
<td>BMI (kg/m²)</td>
<td>29.4 ± 3.9</td>
<td>29.6 ± 4.7</td>
</tr>
<tr>
<td>Total body fat (kg)</td>
<td>27.8 ± 8.8</td>
<td>25.1 ± 11.6</td>
</tr>
<tr>
<td>Total body fat (%)</td>
<td>36.0 ± 8.4</td>
<td>28.5 ± 8.2</td>
</tr>
<tr>
<td>Total cholesterol (mg/dl)</td>
<td>207.3 ± 33.5</td>
<td>215.7 ± 27.8</td>
</tr>
<tr>
<td>Triglyceride (mg/dl)</td>
<td>158.6 ± 56.8</td>
<td>163.0 ± 55.6</td>
</tr>
<tr>
<td>HDL cholesterol (mg/dl)</td>
<td>44.4 ± 9.9</td>
<td>40.4 ± 10.1</td>
</tr>
<tr>
<td>LDL cholesterol (mg/dl)</td>
<td>131.2 ± 27.9</td>
<td>142.7 ± 17.4</td>
</tr>
<tr>
<td>Fasting glucose (mmol/l)</td>
<td>5.3 ± 0.7</td>
<td>5.5 ± 0.6</td>
</tr>
<tr>
<td>Fasting insulin (µU/ml)</td>
<td>9.8 ± 7.8</td>
<td>11.4 ± 8.9</td>
</tr>
<tr>
<td>HOMA score</td>
<td>2.4 ± 1.9</td>
<td>2.8 ± 2.2</td>
</tr>
</tbody>
</table>

Data are means ± SD. *P < 0.05, †P < 0.01.

lograms divided by height in meters squared (kg/m²).

Biochemical profiles

The plasma glucose concentrations were measured immediately with an autoanalyzer using the hexokinase method (Hitachi 747; Roche, Montclair, NJ). Serum insulin and C-peptide concentrations were determined by an enzyme chemiluminescence immunoassay (ECLIA, DPC, Immulite DPC). The serum total cholesterol, HDL cholesterol, and LDL cholesterol levels were measured by using a direct enzymatic method (Hitachi 747; Daiichi, Tokyo, Japan), serum triglyceride levels were measured by an enzymatic colorimetric method (Hitachi 747; Roche), and serum free fatty acid levels were measured by an enzymatic colorimetric method (Olympus AU640; Daiichi).

OGTT

OGTT was performed after a 12-h overnight fast on the baseline plasma glucose and serum insulin samples. A glucose solution (75 g) was administered orally and samples were then collected at 30, 60, 90, and 120 min. Impaired glucose tolerance was defined as 2-h plasma glucose ≥140 and <200 mg/dl.

Insulin sensitivity

To assess whole-body insulin sensitivity, we calculated the HOMA score in all 75 subjects. On the day before blood sampling, subjects were instructed not to consume any food after midnight and to avoid strenuous exercise. The HOMA score was determined using the formula: fasting serum insulin (µU/ml) × fasting plasma glucose (mmol/l)/22.5, as described by Matthews et al. (10 and Bonora et al (11).

Body composition

Dual-energy x-ray absorptiometry. After an initial bed rest of 30 min, whole-body fat mass and fat-free mass were determined by dual-energy X-ray absorptiometry (Hologic QDR 1500; Delphi). BMI was calculated by dividing the body weight by height squared (kg/m²).

Regional fat distribution

Computed tomography. The abdominal and midthigh adipose tissue areas and the midthigh muscle area were quantified by CT (Tomoscan 350; Philips, Mahway, NJ). With the subject in the supine position, a 10-mm CT slice scan was acquired at the L4–L5 level to measure the total abdominal and visceral fat areas. A cross-sectional scan of the same thickness was obtained for both legs at the midpoint between the anterior superior iliac crest and the patella, as described previously (12). Skeletal muscle attenuation was determined by measuring the mean value of all pixels within the range of 0 to 100 Hounsfield units (HU); adipose tissue areas fell in the range of –150 to –50 HU. The midthigh skeletal muscle area was compartmentalized into a normal density muscle area (+31 to +100 HU) and a low-density muscle area (0 to +30 HU).

Statistical analysis

All values are expressed as means ± SD. Associations between anthropometric and biochemical parameters, body compositions, or regional fat distributions and the HOMA scores were identified using Pearson correlations. ANOVA was used to compare the mean values of these parameters between male and female subjects or between premenopausal and postmenopausal subjects. A P value of 0.05 was considered significant.

RESULTS — The mean values of abdominal visceral and subcutaneous adipose tissues were 120.9 ± 65.4 and 250.6 ± 97.4 cm², respectively, and the mean midthigh muscle areas were 106.1 ± 28.6 cm² for normal density muscle and 17.3 ± 6.8 cm² for low density muscle, respectively (Table 2).

Fasting serum triglyceride levels and free fatty acid levels were found to be correlated with the HOMA scores (r = 0.354, P < 0.01 and r = 0.553, P < 0.01; Fig. 1). Fasting serum insulin levels were significantly related to BMI (r = 0.250, P < 0.05), the abdominal visceral fat area (r = 0.405, P < 0.01), and the midthigh low-density muscle area (r = 0.532, P < 0.01). Fasting serum free fatty acid levels were correlated with the midthigh low-density muscle area (r = 0.272, P < 0.05).

Table 2—Mean values of abdominal and mid-thigh area

<table>
<thead>
<tr>
<th>Area (cm²)</th>
<th>Total subjects (n = 75)</th>
<th>Men (n = 23)</th>
<th>Women (n = 52)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AVFA</td>
<td>120.9 ± 65.4</td>
<td>172.6 ± 83.5</td>
<td>98.0 ± 38.3*</td>
</tr>
<tr>
<td>ASFA</td>
<td>250.6 ± 97.4</td>
<td>194.2 ± 87.6</td>
<td>275.6 ± 91.6*</td>
</tr>
<tr>
<td>TLDMA</td>
<td>17.3 ± 6.8</td>
<td>18.5 ± 8.1</td>
<td>16.7 ± 6.2</td>
</tr>
<tr>
<td>TNDMA</td>
<td>106.1 ± 28.6</td>
<td>124.3 ± 35.9</td>
<td>98.0 ± 20.4*</td>
</tr>
<tr>
<td>TSFA</td>
<td>96.4 ± 43.6</td>
<td>69.4 ± 48.6</td>
<td>108.3 ± 35.7*</td>
</tr>
</tbody>
</table>

Data are means ± SD. *P < 0.01. ASFA, abdominal subcutaneous fat area; AVFA, abdominal visceral fat area; TLDMA, midthigh low-density muscle area; TNDMA, midthigh normal-density muscle area; TSFA, midthigh subcutaneous fat area.
The abdominal subcutaneous fat area did not correlate with the HOMA score, but the abdominal visceral fat area was well correlated with the HOMA score \((r = 0.471, P < 0.01; \text{Fig. } 2A)\). The ratio of visceral to subcutaneous abdominal fat area also correlated with the HOMA score \((r = 0.434, P < 0.01; \text{Fig. } 2B)\). The midthigh low-density muscle area was found to be linearly correlated with the HOMA score \((r = 0.513, P < 0.01; \text{Fig. } 2C)\). After adjusting for BMI and total body fat, the correlation between the low-density muscle area and the HOMA score remained valid \((r = 0.451, P < 0.01 \text{ and } r = 0.522, P < 0.01, \text{respectively})\). Even after controlling for abdominal visceral fat area, the low-density muscle area correlated with the HOMA score \((r = 0.399, P < 0.01)\).

Total body weight, BMI, and total fat mass were shown to decline with age \((r = -0.352, P < 0.01; r = -0.362, P < 0.01; \text{and } r = -0.402, P < 0.01, \text{respectively})\). The abdominal subcutaneous fat area decreased with age \((r = -0.438, P < 0.01)\), but the ratio of visceral to subcutaneous abdominal fat increased significantly with age \((r = 0.369, P < 0.01)\), without a corresponding statistically significant increase in the abdominal visceral fat area. Midthigh subcutaneous fat areas decreased with age \((r = -0.572, P < 0.01)\), but neither the low-density muscle area nor the normal-density muscle area was significantly correlated with age.

Although the BMI was identical in both sexes, the percentage of total body fat was higher in women \((39.3 \pm 6.0\% \text{ vs. } 28.5 \pm 8.2\%\); \(P < 0.01)\) and the percentage of fat-free mass was higher in men \((P < 0.01)\). Fasting serum insulin levels and the HOMA score in both sexes were identical. The abdominal visceral fat area was greater in men than in women \((172.6 \pm 83.5 \text{ vs. } 98.0 \pm 38.3 \text{ cm}^2, P < 0.01)\), but the abdominal and midthigh subcutaneous fat area was greater in women \((P < 0.01)\). The midthigh low-density muscle area was similar in both sexes \((18.5 \pm 8.1 \text{ vs. } 16.7 \pm 6.2 \text{ cm}^2, \text{NS})\), but the normal density muscle area was greater in men than in women \((P < 0.01)\). In men, the abdominal visceral fat area was related most closely to the HOMA score \((r = 0.652, P < 0.01)\), and this correlation persisted after adjustment for BMI and total fat mass \((r = 0.53, P < 0.05 \text{ and } r = 0.67, P < 0.01, \text{respectively})\). In women, only the midthigh low-density muscle area was correlated with the HOMA score \((r = 0.59, P < 0.01)\) independent of BMI, total fat mass, or abdominal visceral fat area.

Postmenopausal women had a greater abdominal visceral fat area than premenopausal women \((113.0 \pm 35.0\% \text{ vs. } 89.5 \pm 38.0\% \text{ cm}^2, P < 0.01)\), but the abdominal and midthigh subcutaneous fat areas were greater in premenopausal women than in postmenopausal women \((P < 0.05)\). The midthigh low-density muscle area was identical in both groups, but the normal-density muscle area was greater in the premenopausal women than in the postmenopausal women \((104.9 \pm 14.7\% \text{ vs. } 86.0 \pm 23.6 \text{ cm}^2, P < 0.01)\).

 Patients with impaired glucose tolerance had higher HOMA scores \((3.3 \pm 2.4\% \text{ vs. } 1.7 \pm 1.2\%; P < 0.01)\) and greater abdominal visceral fat and midthigh low-density muscle areas \((143.0 \pm 80.6\% \text{ vs. } 107.0 \pm 49.8 \text{ cm}^2, P < 0.05 \text{ and } 19.1 \pm 6.9\% \text{ vs. } 16.1 \pm 6.5 \text{ cm}^2, P = 0.06, \text{respectively})\) than those with normal glucose tolerance. Men and postmenopausal women showed a greater glycemic response to a 75-g oral glucose load than premenopausal women \((7.9 \pm 1.1 \text{ and } 7.8 \pm 0.9\% \text{ vs. } 7.2 \pm 1.0 \text{ mmol/l, respectively, } P < 0.05)\).

CONCLUSIONS — Recent evidence suggests that low-density muscle is closely linked to insulin resistance in obese Caucasian patients \((6,13,14)\). The present study confirms that low-density muscle is strongly associated with insulin resistance in nondiabetic obese subjects in Korea.

To evaluate regional fat distribution, we used single-slice images from the mid-abdomen at L4-L5 and from the midthigh, which have been frequently used to measure the quantity and distribution of adipose tissue in the thigh in many other studies \((6,12,15)\). Goodpaster et al. \((16)\) showed that skeletal muscle attenuation by single-slice CT scans well demonstrate muscle fiber lipid content in
percutaneous biopsy specimens. Therefore, skeletal muscle attenuation in vivo as determined by CT may provide valuable information about the association between muscle composition and muscle function.

The abdominal visceral fat area increased with age in both sexes; a more marked fat redistribution was noted in women ($r = 0.382, P < 0.01$). Both hormonal and body compositional changes occur with aging, primarily due to a decrease in lipolytic activity and the consequent prevalence of liposynthesis, resulting in visceral fat accumulation (17). Diminished leptin action or leptin resistance was proposed to explain the metabolic decrease associated with aging. Previous investigators have asserted that age is an independent predictor of low-density muscle, which is associated with insulin resistance in obesity irrespective of sex or age (18,19). A recent study based on muscle biopsies of obese children demonstrated that skeletal muscle triglyceride stores are not a consequence of aging but occur early in the natural course of obesity (20).

Many differences in anthropometric and biochemical parameters, body composition, and regional fat distribution were observed in both sexes in our study, suggesting hormonal effects. Because circulating leptin levels are known to be strongly related to the percentage of body fat and because leptin values in women are twice those in men, higher estrogen levels in women might be responsible for the sexual dimorphism of leptin concentrations, but this hypothesis has not been confirmed.

Our results suggest that the menopause transition is associated with an accumulation of visceral adipose tissue. The menopause transition is associated with a reduction in resting metabolic rate, physical activity, and fat-free mass and an increase in fat mass and abdominal adipose tissue accumulation. Abdominal visceral adipose tissue was found to be a more important predictor of insulin resistance than low-density muscle in postmenopausal women in our study, which is consistent with the findings of previous studies (21,22), whereas low-density muscle seems to play a key role in premenopausal women.

Few studies have been conducted in the Asian populations with regard to racial differences in body composition, regional fat distribution, and insulin resistance (23–28). Our results show that abdominal visceral adiposity and low-density muscle are related to insulin resistance in mildly obese Korean subjects (under grade II). The prevalence and severity of obesity and related complications are reported to be relatively low in Korea compared with westernized countries. The prevalence of abdominal or visceral obesity may be much higher, although only preliminary data of a small population are currently available (29,30). It is clear that the global issues of obesity per se and abdominal obesity are relevant in Korea and should not be overlooked. Moreover, the significance of in-

Figure 2—Correlation between regional adiposity and insulin resistance. A: Abdominal visceral fat area and HOMA-IR ($P < 0.01$). B: VS ratio and HOMA-IR ($P < 0.01$). C: Midhigh low density muscle and HOMA-IR ($P < 0.01$). VS ratio = abdominal visceral fat area to abdominal subcutaneous fat area ratio.
sulin resistance and its determinants should be emphasized in the Korean pop-
ulation, because Koreans are more sus-
ceptible to glucose intolerance and
diabetes. The maximal secretory function
of β-cells is relatively low, and conse-
quently, even slight stresses on β-cells,
including mild obesity, can substantially
reduce the ability of β-cells to meet
the metabolic demands of insulin in
obese patients (31,32). This hypothesis
provides presumptive evidence that may
explain recent data concerning the rapid-
ly increasing prevalence of metabolic
syndrome and type 2 diabetes in Korea.
Further global epidemiologic studies are
needed if we are to fully understand met-
abolic disparities with respect to the dif-
dent ethnicities.

Previously, Greco et al. (33) empha-
sized the role of abnormal fat deposition
within skeletal muscle on obesity-related
insulin resistance. They found that lipid
deprivation selectively depletes intramy-
cellular lipid stores and induces a normal
metabolic state. Potential mechanisms for
this association include apparent defects
in fatty acid metabolism at the mitochon-
drial level in obese individuals with type 2
diabetes. Substantial evidence indicates
that perturbations in fatty acid oxidation
are involved in the accumulation of skele-
tal muscle triglyceride and the pathogen-
esis of insulin resistance. Moreover,
recently acquired knowledge of insulin
receptor signaling indicates that the accu-
mulation of lipid products within skeletal
muscle can interfere with insulin signal-
ning and finally produce insulin resistance
(6,34).

Although low-density muscle ac-
counts for a relatively small portion of
the total skeletal muscle, it seems to be a valu-
able marker of insulin resistance in the
Korean population. From our data and
previous epidemiologic data, we specu-
late that the significance of low-density
muscle as well as visceral adipose tissues
deserves much consideration with regard
to genetically determined low β-cell ca-
capacity. The mechanisms whereby trigly-
ceride contents within the skeletal muscle
provokes insulin resistance should be in-
vestigated further.

Acknowledgments—This study was sup-
ported by the BK 21 Project for Medical Sci-
cence, Yonsei University.

We thank Professor J. M. Nam, PhD, for
statistical advice and Dr. John Roberts, of Yon-
set Medical College, for helpful discussion and
and critical reading of the manuscript in this study.

References

1. Anderson PJ, Critchley JA, Chan JC,
Cockram CS, Lee ZS, Thomas GW, Tom-
linson B: Factor analysis of the metabolic
syndrome: obesity vs insulin resistance as
the central abnormality. J Int Obes Relat Metab
Disord 25:1782–1788, 2001

2. Taniguchi A, Miyamoto Y, Fukushima K,
Taniguchi A, Hirao O, Kitamura S, Kinou-
chi K. Relationship of regional adiposity
to insulin resistance and serum triglycer-
ide levels in nonobese Japanese type 2 di-
abetic patients. Metabolism 51:544–548,
2002

3. Ross R, Freeman J, Hudson R, Janssen I:
Abdominal adiposity and insulin resis-
tance in men and women. J Appl Physiol
282:E657–E663, 2002

4. Dvorak RV, DeNino WF, Ades PA, Poehl-
man ET: Phenotypic characteristics asso-
ciated with insulin resistance in meta-
bolically obese but normal-weight young

5. Ruderman NB, Chisholm D, Poehlman ET:
The metabolic syndrome: obesity and in-
esulin resistance, obesity, and weight loss.

6. Kelley DE, Price JC, Cobelli C: Skeletal
muscle triglycerides: an aspect of regional
adiposity and insulin resistance. Diabetes
23:933–941, 2001

7. Kelley DE, Goodpaster B, Wing RR, Simo-
neau JA: Skeletal muscle fatty acid meta-
bolism in association with insulin resis-
tance, obesity, and weight loss. Am J Physiol
277:E1130–E1141, 1999

8. Divisova J, Kozdova L, Hubova M, Me-
schisvili E: Relationship between insulin
resistance and muscle triglyceride content
in nonobese and obese experimental
models of insulin resistance syndrome.

9. WHO/IASO/IOTF: The Asia-Pacific Per-
spective: Redining Obesity and its treat-
ment. Hong Kong, Health Communications
Australia Pty Ltd, 2000

10. Matthews DR, Hosker JP, Rudenski AS,
Naylor BA, Treacher DF, Turner RC: Ho-
meostasis model assessment: insulin resis-
tance and beta-cell function from fasting
plasma glucose and insulin concen-
trations in man. Diabetologia 28:412–
419, 1985

11. Bonora E, Kiechl S, Oberhollenzer F,
Egger G, Bonadonna RC, Muggeo M, Wil-
lett J: Homeostasis model assessment
closey mirrors the glucose clamp tech-
nique in the assessment if insulin sensitiv-

12. Kelley DE, Slasky BS, Janosky J: Skeletal
muscle density: effects of obesity and
non-insulin-dependent diabetes mellitus.

DE: Skeletal muscle lipid content and in-
sulin resistance: evidence for a paradox in
endurance-trained athletes. J Clin Endocri-
nol Metab 86:5755–5761, 2001

14. Kelley DE, Williams KV, Price JC, McKo-
lanis TM, Goodpaster BH, Theale FL: Plasma
fatty acids, adiposity, and variance of
skeletal muscle insulin resistance in
non-insulin-dependent diabetes mellitus.
J Clin Endocrinol Metab 86:5412–5419, 2001

15. Jensen MD, Kanaley JA, Reed JE, Sheedy
PF: Measurement of abdominal and vis-
ceral fat with computed tomography and
dual-energy x-ray absorptiometry. Am J

J, Ross R: Skeletal muscle attenuation
determined by computed tomography is as-
sociated with skeletal muscle lipid content.
J Appl Physiol 89:104–110, 2000

17. Armellini F, Zamboni M, Bosello O: Horm-
ones and body composition in humans:
clinical studies. Int J Obes Relat Metab Dis-
ord 24 (Suppl. 2):S18–S21, 2000

18. Ryan AS, Nicklas BJ: Age-related changes
in fat deposition in mid thigh muscle in
women: relationships with metabolic car-
diovascular disease risk factors. Int J Obes
Relat Metab Disord 23:126–132, 1999

19. Goodpaster BH, Theale FL, Kelley DE:
Thigh adipose tissue distribution is asso-
ciated with insulin resistance in obesity
and in type 2 diabetes mellitus. Am J Clin
Nutr 71:885–892, 2000

20. Sinha R, Dufour S, Petersen KF, LeBon V,
Enoksson S, Ma YZ, Savoye M, Rothman
DL, Shulman GI, Caprio S: Assessment of
skeletal muscle triglyceride content by
(1)H nuclear magnetic resonance spec-
troscopy in lean and obese adolescents:
relationships to insulin sensitivity, total
body fat, and central adiposity. Diabetes
51:1022–1027, 2002

21. Munoz J, Derstine A, Gower BA: Fat dis-
tribution and insulin sensitivity in post-
menopausal women, influence of hor-
431, 2002

22. Brochu M, Starling RD, Tchernof A, Mat-
thews DE, Garcia-Rubi E, Poehlman ET:
Visceral adipose tissue is an independent
correlate of glucose disposal in older
obese postmenopausal women. J Clin En-
docrinol Metab 85:2378–2384, 2000

23. Simon D, Bourgeon M, Balkau B, Esch-
wege E, Charles MA: Insulin sensitivity
and ethnic groups. Diabetes Metab 27:
215–221, 2001

24. Conway JM: Ethnicity and energy stores.
Am J Clin Nutr 62 (Suppl. 5):1075S–
1077S, 1995

25. Fujimoto WY, Bergstrom RW, Boyko EJ,
Kim and Associates
Muscle fat content as index of insulin resistance

