OBJECTIVE — Neurophysiological assessment of the peripheral autonomic system is characterized by various limitations. An alternative approach to laser Doppler and venous plethysmography is the assessment of the sympathetic vasomotor response of the radial artery obtained by continuous wave Doppler sonography. Nomogram data have been established and demonstrate the temporary disappearance of diastolic flow after coughing or deep inspiration.

RESEARCH DESIGN AND METHODS — We assessed the sympathetic vasomotor response in 25 patients (mean age 64 years, range 43–76) with diabetic foot syndrome. The Doppler data were correlated with nerve conduction studies of the median and peroneal nerve, the extent of radiologically diagnosed media sclerosis, and compared with nomogram values (n = 41).

RESULTS — Although similar mean flow velocities were found under baseline conditions, the flow pattern was characterized by higher pulsatility in the diabetic group (resistance index [RI] 1.1 vs. 0.7). No significant difference in RI was observed after coughing. The latency of onset of the response was prolonged (2.1 vs. 1.5 s), while the duration of the response did not differ (18 vs. 15 s). Only the nerve conduction velocity of the peroneal nerve correlated inversely with the RI. The extent of radiologically proven calcification tended to correlate with the pulsatility of the baseline signal and the response latencies.

CONCLUSIONS — The data obtained by this study suggest the concurrent existence of reduced vessel elasticity due to media sclerosis and dysfunction of the autonomic vasomotor system.

A utonomic neuropathy is a frequent complication in diabetes and one of the major causes of cardiovascular death. Mortality rates vary from a 60% 5-year mortality (1) to a 10% 10-year mortality (2) and are about three times as high as in patients with neuropathy with mortality (2) and are about three times as high as in patients with neuropathy with

From the 1Department of Neurology, Johannes Gutenberg-University, Mainz, Germany; the 2Department of Neurology, Klinikum Ludwigsburg, Ludwigsburg, Germany; the 3Department of Endocrinology, Johannes Gutenberg-University, Mainz, Germany; the 4Department of Radiology, Johannes Gutenberg-University, Mainz, Germany; and the 5Department of Biomedical Statistics, Johannes Gutenberg-University, Mainz, Germany.

Address correspondence and reprint requests to B. Martin Eicke, MD, Department of Neurology, Johannes Gutenberg-University Mainz, Langenbeckstr. 1, D-55101 Mainz, Germany. E-mail: eicke@neurologie.klinik.uni-mainz.de.

Received for publication 12 July 2002 and accepted in revised form 22 May 2003.

Abbreviations: RI, resistance index

A table elsewhere in this issue shows conventional and Système International (SI) units and conversion factors for many substances.

© 2003 by the American Diabetes Association.
abnormalities. However, this method is inadequate in the assessment of autonomic neuropathy, due to the fact that slow-conducting Aδ and C-fibers, which account for ~80% of all fibers, cannot not be measured by conventional conduction measurements. We compared the continuous wave Doppler results with results obtained by nerve conduction studies of the median and peroneal nerve to evaluate potential correlations between the autonomic and somatosensory system.

RESEARCH DESIGN AND METHODS — We investigated 25 patients (mean age 64 years, range 43–76) with diabetes and diabetic foot syndrome (22 type 2 and 3 type 1 diabetic patients). Two of the patients presented with a deep ulcer, 19 patients had a deep ulcer combined with an abscess and/or osteomyelitis, and 4 patients had additional necrosis limited to the forefoot or the calcaneus. Mean duration of diabetes was 19.4 ± 9.1 years (range 5–37), and mean HbA1c was 6.4 ± 1.4% (range 4.4–10.8). Patients were admitted to the hospital in order to optimize insulin treatment and stabilize dystrophic ulcers of the feet.

Recent biplanar plain radiographs of the feet were available in 23 diabetic patients. The presence of media sclerosis of the interdigital arteries was described semiquantitatively based on the cumulative length of visibly calcified vessels. Patients with grade I media sclerosis (n = 8) had radiologically proven calcifications ≤1 cm, patients with grade II media sclerosis (n = 8) had radiological evidence of calcification >1 and ≤5 cm, and patients with grade III media sclerosis (n = 7) showed calcifications >5 cm. The extent of media sclerosis correlated with the duration of diabetes (degree 0 or I 15, II 15.5, and III 23 years).

The control group included 41 neurologically healthy volunteers (23 female, 18 male), aged 16–82 years (mean 52) (nondiabetic group).

The radial artery at the distal forearm was insonated noninvasively with a 4 MHz continuous wave Doppler probe (Multidop T; DWL, Sipplingen, Germany). The angle of insonation was ~45°. The Doppler signal was monitored for at least 1 min before stimulation to allow the establishment of diastolic flow. For sympathetic stimulation, volunteers and patients were asked to cough without moving the arm. The Doppler signal was monitored continuously, and the duration of the response was recorded. We calculated the latencies between the stimulus (cough) and the onset of response, as well as the latency between onset and the maximum extent of the reaction indicated by the flow velocity minimum. Flow velocities were recorded in kilohertz frequency shift. Because information concerning the accurate angle of insonation with continuous wave Doppler was lacking, conversions to centimeters per second were abandoned. Mean temporal flow velocity data were calculated according to equation 1, and the RI (or “Pourcelot” index), as an indicator of the peripheral (arteriolar) vasoconstrictive, peripheral (arteriolar) vasoconstriction, diabetic, Tubney Woods, U.K.). The anti-drome sensory nerve conduction studies of the median nerve were performed by averaging a minimum of eight signals at a repetition frequency of 2 Hz. All measurements were taken at the bedside at room temperatures ranging from 22 to 25°C. To avoid cold skin temperatures, the patients rested in bed covered with a blanket for at least 30 min before onset of the study. Doppler data recorded in the diabetic group were correlated with the duration of diabetes, HbA1c, and amplitudes and nerve conduction velocities of the peroneal and median nerve.

Informed consent was obtained from all patients. Statistical analysis included the comparison of Doppler parameters.

![Figure 1](image-url)

Figure 1—A: Typical course of a normal sympathetic vasomotor response as recorded by continuous wave Doppler sonography. Note the reversed diastolic flow after the cough. B: Typical course of the vasomotor response in a diabetic patient. Note the increased pulsatility under baseline conditions and dampened response to the cough.
Systolic vasomotor response

RESULTS — All data in the text are presented as mean values; median values and SDs are shown in Table 1.

Baseline
A comparison with the nomogram data revealed a different flow profile in the radial artery with a significantly higher systolic (2.63 vs. 1.77 kHz; *P = 3.5 × 10⁻⁵, Wilcoxon test) and lower diastolic (−0.31 vs. 0.26 kHz; *P = 3.8 × 10⁻⁵, t test) flow (Figs. 1 and 2), which was further corroborated by a higher RI (1.11 vs. 0.86; *P = 6.8 × 10⁻⁵, t test). A biphasic flow with flow reversal in early diastole was observed in 23 of 25 patients (92%), as compared with 10 of 42 volunteers (23%) in the control group. The mean temporal frequency shifts did not differ significantly (0.67 vs. 0.75 kHz). Although the systolic blood flow velocities increased in relationship to the severity of the peroneal motor nerve conduction velocity (32.9 cm/s) in addition to a fall in distal motor latency (5.1 ms), while the other nerve conduction parameters were unremarkable. Only the peroneal motor nerve conduction velocity correlated inversely with the RI (r = −0.52) (Fig. 4) and positively with the mean radial artery flow velocity (r = 0.60). None of the median nerve conduction parameters correlated with the Doppler results.

Stimulation
After coughing, similar Doppler curves were observed for the patients and the control group at identical RIs (1.3) (Table 1). However, in view of the different baseline values, the absolute change also varies (0.18 vs. 0.40; *P = 4.98 × 10⁻⁴, t test). The drop in systolic flow did not differ significantly in regard to the absolute figures values (−0.3 vs. −0.28 kHz), although the relative change was less pronounced when considering the higher baseline value of the diabetic patients. The absolute drop in diastolic flow velocity was more pronounced in the control group (−0.34 vs. −0.6 kHz; *P = 0.27, Wilcoxon test).

The latencies from coughing to the onset of the response were prolonged (2.3

Spearman’s correlation coefficient was used for the correlation of two continuous variables, and the Bonferroni correction was used to adjust for a multiplicity of tests (12 tests). Tests with an adjusted P value <5% are thus ensured to be significant at the multiple significance level of 5%.

Table 1—Doppler baseline values and changes after stimulation

<table>
<thead>
<tr>
<th></th>
<th>Control group</th>
<th>Diabetes group</th>
<th>Adjusted P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Systolic flow (baseline) (kHz)</td>
<td>1.77 ± 0.27 (1.8)</td>
<td>2.63 ± 0.88 (2.55)</td>
<td>3.5 × 10⁻⁵ (t) sign</td>
</tr>
<tr>
<td>Change (kHz)</td>
<td>−0.30 ± 0.21 (0.3)</td>
<td>−0.28 ± 0.31 (0.3)</td>
<td>1.00 (t) NS</td>
</tr>
<tr>
<td>Diastolic flow (baseline) (kHz)</td>
<td>0.26 ± 0.48 (0.4)</td>
<td>0.31 ± 0.39 (−0.3)</td>
<td>3.8 × 10⁻⁵ (t) sign</td>
</tr>
<tr>
<td>Change (kHz)</td>
<td>−0.60 ± 0.41 (−0.7)</td>
<td>−0.34 ± 0.31 (−0.2)</td>
<td>0.27 (W) NS</td>
</tr>
<tr>
<td>Mean flow (baseline) (kHz)</td>
<td>0.75 ± 0.33 (0.87)</td>
<td>0.67 ± 0.30 (0.6)</td>
<td>1.0 (t) NS</td>
</tr>
<tr>
<td>Change (kHz)</td>
<td>−0.50 ± 0.31 (−0.3)</td>
<td>−0.31 ± 0.27 (−0.3)</td>
<td>0.35 (W) NS</td>
</tr>
<tr>
<td>RI (baseline)</td>
<td>0.86 ± 0.28 (0.7)</td>
<td>1.11 ± 0.12 (1.1)</td>
<td>6.8 × 10⁻⁵ (t) sign</td>
</tr>
<tr>
<td>Change (kHz)</td>
<td>0.4 ± 0.28 (0.4)</td>
<td>0.18 ± 0.12 (0.15)</td>
<td>4.98 × 10⁻⁴ (t) sign</td>
</tr>
<tr>
<td>Duration of response (s)</td>
<td>14.5 ± 7.6 (15)</td>
<td>17.9 ± 5.5 (18.4)</td>
<td>0.48 (W) NS</td>
</tr>
<tr>
<td>Cough (onset of reaction) (s)</td>
<td>1.5 ± 0.6 (1.5)</td>
<td>2.3 ± 0.9 (2.05)</td>
<td>0.0022 (W) sign</td>
</tr>
<tr>
<td>Onset (maximum) (s)</td>
<td>3.1 ± 1.7 (3.5)</td>
<td>5.6 ± 3.1 (4.9)</td>
<td>0.012 (W) sign</td>
</tr>
</tbody>
</table>

Data are mean ± SD (median): t, t test; W, Wilcoxon test.

Figure 2—Doppler frequency shifts (peak systolic and diastolic) in the diabetic and control groups before and after the cough (mean values ± SD). *P < 0.00001.
Table 2—Nerve conduction studies in the diabetic group

<table>
<thead>
<tr>
<th>Median</th>
<th>n = 25*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Motor CV (m/s)</td>
<td>46.7 ± 6.5 (46.4)</td>
</tr>
<tr>
<td>DML (ms)</td>
<td>5.1 ± 0.8 (3.2)</td>
</tr>
<tr>
<td>Amplitude (mV)</td>
<td>7.1 ± 3.7 (6.4)</td>
</tr>
<tr>
<td>Sensory CV</td>
<td>41.3 ± 6.7 (41.4)</td>
</tr>
<tr>
<td>Amplitude</td>
<td>11.9 ± 10.3 (8.4)</td>
</tr>
</tbody>
</table>

Data are mean ± SD (median). *All 25 patients were tested; patients with absent potentials were not analyzed further. CV, conduction velocity.

One possible explanation for this finding is a reduction in the “Windkessel” function of the vascular system due to decreased elasticity (distensibility) of the vessel walls (15). Under physiological conditions, only proximal arteries of the upper extremities show a continuous bi- or triphasic flow profile. In more peripheral vessels this profile changes to a constant positive monophasic flow throughout systole and diastole. Similar mean flow velocities observed in both our patients and the control group, as well as the correlation between the severity of media sclerosis and the systolic flow velocities, further support this hypothesis. Arterial calcification of the media layer in diabetic subjects is a common phenomenon and can be diagnosed radiologically in 81% of the distal lower limb and 89% of the proximal lower limb arteries (16). This may lead to greater rigidity of the vessel, which can be diagnosed noninvasively clinically ("pseudohypertonia" of the lower limbs) and by Doppler ultrasound imaging (17).

Our results are in contrast to previously published data on flow profiles in diabetic subjects (18), which had shown a slightly lower systolic flow velocity in diabetic subjects compared with normal subjects. However, the presence of diabetes in the reported patient groups was of shorter duration than in our group (14 and 18 vs. 19 years). Autonomic changes were not reported in this cited study. The impact of the presence of autonomic changes is demonstrated by comparison of our data of severely affected patients with data from a second Doppler study with diabetic patients without clinical signs of polyneuropathy or autonomic dysfunction (12). Only a minority of 4 of 20 patients exhibited negative diastolic flow at baseline. In contrast, negative diastolic flow was present in our study in 23 of 25 patients. Our data are consistent with results of a thermal clearance study (19) and a laser Doppler flow study (20); both of these studies failed to show spontaneous variability of finger blood flow in patients with diabetic autonomic neuropathy. In the present study the high resistance flow profile remained unchanged over time, despite extended relaxation time.

In contrast to studies focusing on the hemodynamics of the diabetic foot (2,7,10), we found no hyperperfusion state in the arm. A hyperperfusion syndrome with up to threefold blood flow volume due to opening of arterovenous anastomoses has been reported (21). Since the mean temporal flow in the radial artery was unchanged in our study, we found no evidence of extensive arterovenous anastomoses in the upper extremity. This observation is supported by temperature measurements showing baseline hyperthermia at the ankle but not in the hands of diabetic patients (22).

Sympathetic vasomotor responses in the upper extremities have been demonstrated in normal volunteers using Doppler sonography of the radial artery (12–14), laser Doppler flowmetry (9,23), and thermal recovery after ice water exposure (24). The vasoconstrictive reaction is characterized by a decline in blood flow (laser Doppler) and a predominantly diastolic blood flow velocity reduction (radial artery Doppler). Our data in the diabetic group are consistent with data reported in the literature, showing a less pronounced or absent reaction diagnosed by laser Doppler (9,23). A thermography study showed the absence of a reaction in diabetic patients only in the presence of autonomic dysfunction (22). In a continuous wave Doppler study with diabetic patients without reported signs of autonomic dysfunction, 50% of the patients showed a normal reaction (12), defined as a diastolic flow reversal after stimulation, as compared with only two (8%) of our patients with a diabetic foot.

As the flow profile in the diabetic group of our study revealed the presence of already markedly increased pulsatility at baseline, changes in pulsatility due to...
the sympathetic reaction cannot be expected.

The significantly prolonged latencies from the stimulus to the onset of reaction (2.1 vs. 1.5 s), and from the onset to the maximum extent of the reaction period (4.9 vs. 3.5 s), are probably due to diabetes-induced dysfunction, caused by a demyelinating or axonal disorder of the sympathetic A6 fibers. However, as continuous wave Doppler data of patients in a clinically critical condition due to other diseases have not been published, effects due to medication or clinical circumstances cannot be ruled out. Despite the coexistence of autonomic dysfunction and pathological nerve conduction studies, the correlation between the development of autonomic dysfunction in diabetic patients with polyneuropathy and the nerve conduction studies is poor (24). Furthermore, one of the most characteristic clinical features of somatosensory polyneuropathy, the deterioration of the vibration sense, is not correlated with autonomic dysfunction (25). Conversely, a pathological postural arteriolar vasoconstriction test was found in diabetic patients without clinical evidence of somatosensory polyneuropathy (9). For this reason it is not surprising that the only consistent test was found in diabetic patients with clinically manifest polyneuropathy over a decade in insulin-dependent diabetics. Q J Med 75:635–646, 1990

References

