Plantar Fat-Pad Displacement in Neuropathic Diabetic Patients With Toe Deformity

A magnetic resonance imaging study

Sicco A. Bus, MSc1
Mario Maas, MD, PhD2
Peter R. Cavanagh, PhD, DSc3
Robert P. J. Michels, MD, PhD1
Marcel Levi, MD, PhD1

OBJECTIVE — The aim of this study was to quantify the association between claw/hammer toe deformity and changes in submetatarsal head (sub-MTH) fat-pad geometry in diabetic neuropathic feet.

RESEARCH DESIGN AND METHODS — Thirteen neuropathic diabetic subjects (mean age 56.2 years) with toe deformity, 13 age- and sex-matched neuropathic diabetic control subjects without deformity, and 13 age- and sex-matched healthy control subjects without deformity were examined. From high-resolution sagittal plane magnetic resonance images of the second and third ray of the foot, toe angle (a measure of deformity), sub-MTH fat-pad thickness, and subphalangeal fat-pad thickness were measured. The ratio of these thicknesses was used to indicate fat-pad displacement.

RESULTS — Sub-MTH fat pads were significantly thinner (2.5 ± 1.3 vs. 6.0 ± 1.4 mm, P < 0.001) and subphalangeal fat pads significantly thicker (9.1 ± 1.9 vs. 7.6 ± 1.2 mm, P < 0.005) in the neuropathic group with deformity compared with neuropathic control subjects. As a result, thickness ratio was substantially smaller in the deformity group: 0.28 ± 0.14 vs. 0.79 ± 0.14 in neuropathic control subjects (P < 0.001). A significant correlation of 0.85 was present between toe angle and thickness ratio (P < 0.001). No significant differences were found between neuropathic and healthy control subjects.

CONCLUSIONS — This study shows a distal displacement and subsequent thinning of the sub-MTH fat pads in neuropathic diabetic patients with toe deformity and suggests that, as a result, the capacity of the tissue in this region to reduce focal plantar pressure is severely compromised. This condition is likely to increase the risk of plantar ulceration in these patients.

Diabetes Care 27:2376–2381, 2004

Fat pads under the metatarsal heads (MTHs) in the foot provide the primary source of cushioning to protect the skin from damage during gait. These fat pads are invested in the flexor tendons of the toes and originate from the plantar ligaments, which are firmly attached to the proximal phalanges (1,2). In clawing and hammering of the toes, the sub-MTH fat pads are believed to migrate distally as a result of hyperextension of the metatarsal-phalangeal (MTP) joint, exposing the now prominent and unprotected MTHs to elevated levels of mechanical pressure during gait (1,3–5). Elevated plantar pressure has long been established as a major risk factor for plant ulceration in diabetic neuropathic feet (6,7).

Dissection of nondiabetic cadaver feet with hammered toes has shown a distal pull of the plantar fat pad with substantial thinning or even loss of sub-MTH fat tissue and thickening of fat tissue plantar to the proximal phalanx (1). However, despite numerous theoretical and anecdotal reports, there is no quantitative in vivo evidence of fat-pad displacement and resultant thinning of sub-MTH fat tissue secondary to toe deformity in neuropathic diabetic patients.

Clawing/hammering of the toes, which is a common deformity in diabetic patients (8,9), has been shown to be a significant predictor of elevated plantar pressure in neuropathic diabetic patients (10) and, prospectively, of foot ulceration in people with diabetes (11). Therefore, the study of above-mentioned mechanism is important to improve our understanding of the role toe deformity plays in causing plantar ulceration. Because magnetic resonance imaging (MRI) has emerged as the most useful noninvasive tool with which fatty structures can be studied (12), we used this technique to determine, in diabetic neuropathic feet, the association between MTP joint hyperextension and changes in plantar fat-pad geometry.

RESEARCH DESIGN AND METHODS — Thirteen diabetic patients with distal symmetric sensory neuropathy and MTP joint hyperextension deformity (experimental group) and 13 age- and sex-matched diabetic patients with neuropathy but without toe defor-
Table 1—Baseline subject characteristics and experimental results for the three study groups

<table>
<thead>
<tr>
<th></th>
<th>Neuropathic experimental</th>
<th>Neuropathic control</th>
<th>Healthy control</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>13</td>
<td>13</td>
<td>13</td>
</tr>
<tr>
<td>Age (years)</td>
<td>56.3 ± 8.6</td>
<td>57.2 ± 6.5</td>
<td>53.9 ± 6.8</td>
</tr>
<tr>
<td>Height (m)</td>
<td>1.77 ± 0.10</td>
<td>1.74 ± 0.06</td>
<td>1.73 ± 0.08</td>
</tr>
<tr>
<td>Weight (kg)</td>
<td>85.5 ± 14.6</td>
<td>79.5 ± 10.3</td>
<td>79.3 ± 10.6</td>
</tr>
<tr>
<td>BMI (kg/m²)</td>
<td>27.2 ± 2.9</td>
<td>26.4 ± 4.1</td>
<td>26.6 ± 4.2</td>
</tr>
<tr>
<td>Diabetes type (1/2)</td>
<td>9/4</td>
<td>11/2</td>
<td>—</td>
</tr>
<tr>
<td>Diabetes duration (years)</td>
<td>32.8 ± 12.0</td>
<td>31.1 ± 12.8</td>
<td>—</td>
</tr>
<tr>
<td>HbA1c (%)</td>
<td>7.8 ± 1.2</td>
<td>8.0 ± 0.9</td>
<td>—</td>
</tr>
<tr>
<td>History of ulceration (plantar MTHs excluded)</td>
<td>3</td>
<td>2</td>
<td>—</td>
</tr>
<tr>
<td>Neuropathy duration (years)*</td>
<td>12.4 ± 5.3</td>
<td>11.6 ± 7.6</td>
<td>—</td>
</tr>
<tr>
<td>Vibration perception threshold (volts)</td>
<td>33.5 ± 12.2</td>
<td>36.2 ± 10.6</td>
<td>11.6 ± 4.3</td>
</tr>
<tr>
<td>Foot studied (L/R)</td>
<td>6/7</td>
<td>6/7</td>
<td>5/8</td>
</tr>
<tr>
<td>Number of toes</td>
<td>21</td>
<td>21</td>
<td>19</td>
</tr>
<tr>
<td>Toe angle (α, degrees)</td>
<td>−25.2 ± 10.0</td>
<td>−2.0 ± 5.7†</td>
<td>−3.9 ± 5.9‡</td>
</tr>
<tr>
<td>Fat-pad thickness (mm)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sub-MTH</td>
<td>2.5 ± 1.3</td>
<td>6.0 ± 1.4†</td>
<td>6.0 ± 1.2†</td>
</tr>
<tr>
<td>Subphalangeal</td>
<td>9.1 ± 1.9</td>
<td>7.6 ± 1.2‡</td>
<td>7.7 ± 1.3§</td>
</tr>
<tr>
<td>Thickness ratio</td>
<td>0.28 ± 0.14</td>
<td>0.79 ± 0.14</td>
<td>0.78 ± 0.10†</td>
</tr>
</tbody>
</table>

Data are means ± SD. VPTs for healthy subjects were all within normal limits (14). *As derived from medical records or, when absent, estimated by the patient based on the first appearance of neuropathic symptoms. †P < 0.001, ‡P < 0.005, and §P < 0.05 compared with neuropathic experimental group. ||P < 0.001 compared with both neuropathic control subjects.

mity (neuropathic control group) participated. An age- and sex-matched group of 13 healthy subjects without toe deformity (healthy control group) was also included. Subjects in the experimental group were selected based on deformity present in at least the second or third ray of the foot that was assessed clinically and later confirmed by MRI evaluation as described below. Each group consisted of eight men and five women. The maximum age difference between matched subjects was 6 years. Subject characteristics are summarized in Table 1.

Subjects were classified as neuropathic if they exhibited loss of protective sensation, based on the inability to feel the touch of a 10-g monofilament at one or more of six sites on the plantar surface of the foot (13). Vibration perception threshold (VPT) was also measured according to standardized methods (7) on the dorsal surface of the hallux using a Biothesiometer (Bio-Medical Instrument Company, Newbury, OH). All subjects had abnormal VPT based on the 95% age-appropriate confidence intervals for VPT (14).

Exclusion criteria were: 1) age <40 or >65 years; 2) significant peripheral vascular disease, determined by absent dorsalis pedis or tibialis posterior arterial pulses, combined with an ankle-brachial systolic blood pressure index <0.75 or a toe pressure <50 mmHg; 3) neuropathic syndromes other than distal symmetrical neuropathy associated with diabetes; 4) significant musculoskeletal disorders in the lower extremities, including injury, fracture, and surgery; 5) rheumatoid arthritis, lower-extremity amputation, or Charcot neuroarthropathy; 6) history of ulceration in the plantar MTH region; 7) current foot ulceration or edema; and 8) conditions precluding MRI. This study was approved by the medical ethics committee of the Academic Medical Center of the University of Amsterdam. Written informed consent was obtained from each subject.

A Siemens 1.5-Tesla Magnetom 63SP/4000 imager (Siemens, Erlangen, Germany) was used to acquire high-resolution (512 × 512 pixels) T1-weighted sagittal plane spin-echo images of the foot. Subjects lay supine with one foot inserted into a circular polarized head coil, which provided the best signal-to-noise ratio for studying the foot (12). Their anatomical orientation was parallel to the long axis of the second metatarsal in a transverse plane and perpendicular to the sole of the foot in a coronal plane. Repetition time was 577 ms, echo time 17 ms, slice thickness 3 mm, interslice gap 0.9 mm, and field of view 256 × 256 mm. Acquisition time was 10 min per subject. Representative slices through the second and third MTP joints were selected for quantitative analysis. In some cases, measurements were made from an additional adjacent slice as a result of anatomical misalignment in the sampling plane.

Using Agfa IMPAX WEB1000 software (Agfa-Gevaert N.V., Mortsel, Belgium), the degree of hyperextension deformity was assessed from the MR images by measuring the angle α (called the “toe angle”—negative value denoting extension) between a line parallel to the sole of the forefoot and the bisector of the proximal phalanx (Fig. 1A). All neuropathic subjects with deformity had a toe-extension angle that was a minimum of 2 SD larger than the average toe angle in the neuropathic control subjects. Average toe angles are shown in Table 1.

To improve visualization of plantar fat tissue, the image resolution was increased threefold through interpolation using an eFilm workstation (Merge-
eFilm, Milwaukee, WI), resulting in pixel dimensions of 0.17 × 0.17 mm. The plantar fat pad was defined as the structure with the highest signal intensity between the bone and the skin. It was measured between the lower signal intensity structures dorsally (tendon and connective tissue) and plantarly (subcutis). Fat-pad thickness was measured plantar to the MTH and plantar to the proximal phalanx using Scion Image (National Institutes of Health, Bethesda, MD). Sub-MTH fat-pad thickness was measured perpendicular to the sole of the foot, and subphalangeal fat-pad thickness was measured perpendicular to the bisector of the proximal phalanx. In both regions, measurements at proximal, central, and distal locations were made to provide a good representation of fat-pad thickness throughout the region (Fig. 1B). The average thickness of these three measures per region was used for further analysis. The ratio of sub-MTH to subphalangeal fat-pad thickness was also calculated and was used as an indicator of fat-pad displacement.

Statistical analysis

From each subject group, 26 toes (both second and third digits) were available for analysis. Five toes (from different subjects in the experimental group) were excluded because they did not meet the criterion for deformity (four toes) or could not be examined due to inadequate MRI slice orientation (one toe). In the healthy control group, two toes from one subject were excluded because they were abnormally aligned. Thus, 21 toes were evaluated from both neuropathic groups and 19 toes in the healthy control group.

Differences between the subject groups for each dependent variable in the study were examined using one-way analyses of variance with Tukey post hoc pairwise comparison using SPSS statistical software (SPSS, Chicago, IL). Pearson correlation coefficients were calculated between selected variables of interest for the pooled data of 26 neuropathic subjects (n = 42 toes). The data were pooled because the two neuropathic groups showed a continuous spectrum for toe an-

Figure 1—A: Configuration of the MTP joint defined by the angle between a line parallel to the sole of the forefoot and the bisector of the proximal phalanx. The angle α was named the toe angle, with a negative sign representing extension. B: Representative sagittal-plane image through the MTP joint of the second ray. Sub-MTH and subphalangeal fat-pad thickness were both measured at three proximal-to-distal locations, the former perpendicular to the sole of the foot and the latter perpendicular to the bisector of the proximal phalanx.

Figure 2—Joint configuration and fat-pad geometry in a neuropathic subject with deformity of the second digit (A) and a matched neuropathic subject with a normally aligned second toe (B). Note the remarkable difference in geometry of the plantar fat pads between the subjects. C: Example of a neuropathic subject with toe deformity and almost complete absence of sub-MTH fat tissue.
from the sub-MTH region (Fig. 2) were discontinuity and almost completely absent in the deformed cases. In 10 of the 21 deformed toes, fat tissue was displaced. In support of this finding, strong and highly significant correlations were found between toe angle and thickness ratio ($r = 0.85$), toe angle and sub-MTH fat-pad thickness ($r = 0.80$), and toe angle and subphalangeal fat-pad thickness ($r = -0.57$), showing that pathological changes were more apparent with more severe cases of deformity. In nearly one-half of the deformed toes, a discontinuity and almost complete absence of fat tissue was found in the sub-MTH region (Fig. 2C). It is possible that the plantar fat pad ruptured in these cases.

The present objective in vivo findings confirm anecdotal reports and observational studies on diabetic neuropathic feet (3) and nondiabetic cadaver specimens (1). Ellenberg (3) postulated that a hyperextended position of the toes at the MTP joint leads to uncovered and readily palpable MTHs, resulting in elevated pressure and trauma to soft tissues during ambulation. Bojsen-Moller (1) stated that, because the sub-MTH fat-pad cushions are indirectly connected to the proximal phalanx via the entrapment in vertical tendons, they are displaced distally when the proximal phalanx is hyperextended.

The healthy and neuropathic control groups, who had comparable average toe angles, were not significantly different in fat-pad thickness and thickness ratio (Table 1), which suggests that diabetic neuropathy per se does not induce changes in fat-pad geometry. This finding contradicts that of Gooding et al. (15), who, us-

RESULTS — Baseline characteristics showed no significant differences between the groups, except for VPT, which was significantly lower in the healthy control group when compared with the two neuropathic groups (Table 1).

An initial qualitative evaluation of the MRIs showed differences in fat-pad geometry between the deformed and normally aligned toes of the neuropathic subjects (Fig. 2) with thinner sub-MTH fat pads and thicker subphalangeal fat pads in the deformed cases. In 10 of the 21 deformed toes, fat tissue was discontinuous and almost completely absent from the sub-MTH region (Fig. 2C).

The sub-MTH fat pads were significantly thinner in the experimental group compared with the neuropathic control group ($P < 0.001$), whereas the subphalangeal fat pads were significantly thicker ($P < 0.005$) (Table 1). As a result, the ratio of sub-MTH to subphalangeal fat-pad thickness was substantially smaller (by 65%) in the experimental group ($P < 0.001$). The subphalangeal fat pads were 3.6 times thicker than the sub-MTH fat pads in the experimental group and 1.3 times thicker in the neuropathic control subjects. In all 21 deformed toes examined, sub-MTH fat-pad thickness and thickness ratio were smaller than in their matched controls. Toe angle (α) was significantly correlated with sub-MTH fat-pad thickness ($r = 0.80, P < 0.001$) (Fig. 3A), subphalangeal fat-pad thickness ($r = -0.57, P < 0.001$), and thickness ratio ($r = 0.85, P < 0.001$) (Fig. 3B). Thickness ratio and sub-MTH fat-pad thickness were also significantly correlated ($r = 0.88, P < 0.001$). The healthy control subjects and the neuropathic control subjects were not significantly different from each other on any of the dependent variables.

CONCLUSIONS — The results of this study show that the geometry of the plantar fat pad is remarkably different between neuropathic patients with and without toe deformity, with significantly thinner sub-MTH fat pads and significantly thicker subphalangeal fat pads when deformity is present. Deformity was associated with a 65% reduction in the ratio of sub-MTH to subphalangeal fat-pad thickness, indicating that the sub-MTH fat-pad cushions are distally displaced.

The results of this study show that the geometry of the plantar fat pad is remarkably different between neuropathic patients with and without toe deformity, with significantly thinner sub-MTH fat pads and significantly thicker subphalangeal fat pads when deformity is present. Deformity was associated with a 65% reduction in the ratio of sub-MTH to subphalangeal fat-pad thickness, indicating that the sub-MTH fat-pad cushions are distally displaced. In support of this finding, strong and highly significant correlations were found between toe angle and thickness ratio ($r = 0.85$), toe angle and sub-MTH fat-pad thickness ($r = 0.80$), and toe angle and subphalangeal fat-pad thickness ($r = -0.57$), showing that pathological changes were more apparent with more severe cases of deformity. In nearly one-half of the deformed toes, a discontinuity and almost complete absence of fat tissue was found in the sub-MTH region (Fig. 2C). It is possible that the plantar fat pad ruptured in these cases.
Fat-pad displacement in neuropathic feet

The present study has a number of limitations. First, its cross-sectional design limits the establishment of a cause-and-effect relationship between deformity and plantar fat-pad changes. However, the similarity between the two neuropathic subject groups in diabetes-related baseline characteristics established, in our opinion, a useful model in which this association could be studied. The combined reduction in sub-MTH fat-pad thickness and the increase in subphalangeal fat-pad thickness, together with multiple highly significant correlations among the dependent variables, suggest a causal link between toe deformity, fat-pad displacement, and thinning of sub-MTH fat tissue. The clinical observations from Bojsen-Moller (1) support this conclusion. Second, in measuring fat-pad thickness, no correction was made for the presence of several nonfatty structures (e.g., blood vessels, plantar aponeurosis, and fibroelastic septae) in these fat compartments (2,19) or for the suggested presence of neuropathy-induced fibrotic atrophy of fat tissue (20). It is unlikely that this last factor affected the comparison between the two neuropathic groups, but it may have influenced the comparison between neuropathic and healthy control subjects. Finally, the process of fat-pad thickness measurement was not blinded because the presence of toe deformity was always apparent when the MR images were viewed. This was, however, unavoidable because the borders of the MTH and proximal phalanges were used to define the region of interest in which fat-pad thickness was measured (Fig. 1B).

Despite the high prevalence of claw/hammer toe deformity in diabetic subjects (values of 32 and 46% have been reported) (8,9) and other groups (21), studies on the mechanical implications of this condition are rare. Ours is the first study to quantify plantar fat-pad changes with toe deformity, whereas previously we have shown with MRI that intrinsic muscle atrophy does not necessarily predispose a foot to exhibit claw/hammer toe deformity (22). Our data justify the exploration of mechanisms leading to this condition so that our understanding of diabetic foot ulcer etiology may be further improved. Although MRI is not cost-effective for assessing the risk of ulceration in diabetic feet with toe deformity, the strong associations found in the present study suggest that measures of toe angle, perhaps combined with palpation of the MTH, can be used as a good indicator of reduced fat-pad thickness and possible ulcer risk.

In conclusion, the results of this study confirm the long-held belief that claw/hammer toe deformity leads to sub-MTH fat-pad displacement in the neuropathic diabetic foot. The biomechanics of gait will be altered in these patients, leading to a higher risk for the development of plantar foot ulcers.

Acknowledgments—The authors would like to thank Ruud Smit, Radiological Technician, and Dr. Erik M. Akkerman, Clinical Physicist, for their assistance in MRI data collection and analysis.

References

