Comparison of the $[^{13}\text{C}]$Glucose Breath Test to the Hyperinsulinemic-Euglycemic Clamp When Determining Insulin Resistance

OBJECTIVE — With increasing emphasis on the recognition of the metabolic syndrome and early type 2 diabetes, a clinically useful measure of insulin resistance is desirable. The purpose of this study was to evaluate whether an index of glucose metabolism, as measured by $^{13}\text{CO}_2$ generation from ingested $[^{13}\text{C}]$glucose, would correlate with indexes from the hyperinsulinemic-euglycemic clamp.

RESEARCH DESIGN AND METHODS — A total of 26 subjects with varying degrees of insulin sensitivity underwent both the $[^{13}\text{C}]$glucose breath test and the hyperinsulinemic-euglycemic clamp. Results from the $[^{13}\text{C}]$glucose breath test were compared with measures of insulin sensitivity from the glucose clamp as well as with other commonly used indexes of insulin sensitivity.

RESULTS — There was a strong correlation between the $[^{13}\text{C}]$glucose breath test result and the glucose disposal rate ($r = 0.69, P < 0.0001$) and insulin sensitivity index ($r = 0.69, P < 0.0001$) from the insulin clamp. The magnitude of these correlations compared favorably with QUICKI and were superior to the homeostasis model assessment.

CONCLUSIONS — The $[^{13}\text{C}]$glucose breath test may provide a useful noninvasive assessment of insulin sensitivity.

From the Division of Endocrinology, University of Alberta, Edmonton, Canada.

Address correspondence and reprint requests to Dr. Richard Lewanczuk, Division of Endocrinology, 362 HMRC, University of Alberta, Edmonton, Alberta, Canada T6G 2S2. E-mail: rlewancz@pcu.srv.srv.ualberta.ca.

© 2004 by the American Diabetes Association.
and other states of insulin resistance, glucose uptake would be impaired and the generation of 13CO$_2$ would therefore be blunted. To test this hypothesis, we proceeded to develop and optimize a $[^{13}C]$glucose breath test based on this principle. This early report compares the performance of this $[^{13}C]$glucose breath test with results from the hyperinsulinemic-euglycemic clamp. In addition, performance of the $[^{13}C]$glucose breath test is compared with the HOMA and QUICKI indexes.

RESEARCH DESIGN AND METHODS — This study was carried out in 26 adults, aged ≥18 years, chosen based on the likelihood that they would represent a spectrum of insulin sensitivities. Healthy nonobese subjects ($n = 10$), obese subjects ($n = 7$), and subjects with known type 2 diabetes ($n = 9$) were included in this study. Type 2 diabetic subjects refrained from metformin for a minimum of 12 h before the study and from sulfonylureas for 24 h before the study. Exclusion criteria included the presence of any significant pulmonary, gastrointestinal, or endocrine disorders or the use of insulin or any other medications known to affect insulin sensitivity. Subjects on thiazolidinediones were excluded from participation because of the long clinical half-life of these drugs. Diabetic status for diabetic subjects was verified by chart review according to American Diabetes Association (ADA) criteria. Normal control subjects were included only if euglycemic according to ADA criteria. Obese subjects were excluded if they had a history of diabetes or if they met ADA criteria for diabetes at any point in the study. The project received approval from the Research Ethics Board of the University of Alberta Faculty of Medicine, and all subjects gave their informed consent before participating.

$[^{13}C]$glucose breath test

The $[^{13}C]$glucose breath test and hyperinsulinemic-euglycemic clamp were carried out within 2 days of each other. In most cases, the $[^{13}C]$glucose breath test was carried out the day before the insulin clamp. After an overnight fast, study subjects attended the Clinical Trials Center at the University of Alberta Hospital. On arrival, a baseline breath sample was taken and then subjects consumed 100 ml of the breath test solution. A second breath sample was obtained 90 min after consumption of the breath test solution. The $[^{13}C]$glucose breath test consists of 25 mg $[^{13}C]$glucose mixed with 15 g dextrose and orange flavoring. Immediately before testing, 100 ml tap water was added to the powdered ingredients, and the solution was stirred until dissolved. The $[^{13}C]$glucose (Martek Biosciences Corporation, Columbia, MD) is universally labeled, meaning that 13C occupies all six carbon positions in the molecule. Previous optimization studies had demonstrated that 25 mg $[^{13}C]$glucose was sufficient for diagnostic purposes (data on file, Isotechnika Inc.). The 15 g unlabelled dextrose was used for purposes of palatability and as an indicator to ensure the complete dissolution of $[^{13}C]$glucose. The expired 13CO$_2$ after test drink ingestion was compared with the baseline value, and results were expressed as an absolute increase in 13C in δ %. 13CO$_2$ was measured in breath samples using an AP2003 isotope ratio mass spectrometer (Analytical Precision Limited, Cheshire, U.K.), although it can also be measured using nondispersive infrared spectrometry. To obtain breath samples, subjects were asked to blow the volume of a normal exhalation through a short straw into 10-ml gas sampling tubes (Labco Exetainer system; 13C and gas testing vials, Labco Limited, Buckinghamshire, U.K.). The tubes were then immediately stoppered until analyzed. These tubes are known to be impermeable to gases for up to 90 days after seal. The gas sampling from the tubes occurs via a needle in the AP2003 machine permeating a rubber membrane present in the cap of the tube. The same apparatus and overall method is commonly used in other 13C breath tests such as the 13C urea breath test for Helicobacter pylori. Laboratory personnel were blinded to the clinical status of the subjects.

Hyperinsulinemic-euglycemic clamp

The hyperinsulinemic-euglycemic clamp was carried out as described in a similar comparative study (20). After an overnight fast, subjects were admitted to the Clinical Investigation Unit of the University of Alberta Hospital, where intravenous catheters were placed in both arms for insulin and glucose infusion and for blood sampling. The insulin infusion was carried out with a 10-min priming dose of insulin (80 mU·m$^{-2}$ body surface area·min$^{-1}$ for 5 min) and then maintained at a rate of 20 mU·m$^{-2}$ body surface area·min$^{-1}$ for 240 min. Blood glucose was clamped at a level of 5.0 mmol based on results from blood samples taken every 5 min and analyzed using a YSI 2300 Statplus blood glucose analyzer (Yellow Springs Instruments, Yellow Springs, OH). Serum glucose and insulin levels were measured at baseline and hourly thereafter. The M value (in μmol·kg$^{-1}$·min$^{-1}$) was based on the amount of glucose infused during the last 30 min of the study. The insulin sensitivity index (ISI) was defined as the ratio of M to the measured insulin concentration at the end of the study. Both HOMA and QUICKI indexes were calculated based on the basal serum glucose and insulin levels measured at the beginning of the insulin clamp according to methods originally described (13,14). The coefficient of variation of glucose in the last hour of the clamp was <3%.

Statistical analysis

All values are expressed as means ± SD. The principal hypothesis of this study was that results of the $[^{13}C]$glucose breath test would correlate with indexes from the hyperinsulinemic clamp. Thus, the principal analysis was by weighted linear univariate regression. In addition, multiple and logistic regression was carried out to explore the influence of other variables on insulin sensitivity. A Pearson’s correlation matrix was likewise constructed to compare the relative predictive value of the surrogate measurements of insulin sensitivity with the variables obtained from the insulin clamp. Although not part of the a priori study design, subjects were also categorized according to clinical status as normal (BMI <30 kg/m2), obese (BMI ≥30 kg/m2), or diabetic. Differences in continuous variables between groups were then compared using ANOVA and ANCOVA, or in the case of non-normally distributed data, the Kruskall-Wallis test. Post hoc testing for ANOVA and ANCOVA was carried out using the Tukey test. Categorical data were assessed by Fisher’s exact test. A P value of <0.05 was considered statistically significant. Statistical analysis was carried out using Statview version 5.0.1 (SAS Institute, Cary, NC).

RESULTS — Subject characteristics according to clinical status are shown in

RESULTS — Subject characteristics according to clinical status are shown in
Amplification of the QUICKI and the 13C glucose breath test correlates with both HOMA and QUICKI, whereas the 13C glucose breath test results remained significantly different between groups ($P = 0.027$) with no significant breath test–weight interaction.

Multiple and logistic regression models using either the clamp glucose disposal rate or the ISI generally gave total correlations in the range of 0.85 ($R^2 = 0.72$) when the 13C glucose breath test, fasting plasma glucose, fasting serum insulin, body weight, sex, and age were entered as independent variables. In these cases, the partial correlation coefficient for the 13C glucose breath test was in the order of 0.69, with sex and fasting blood glucose generally having partial correlation coefficients of ~ 0.25. Other variables, or the substitution of either BMI or body surface area for weight, did not contribute significantly to the overall models.

CONCLUSIONS — Results of this study show that 13C glucose breath test results correlate with variables from the hyperinsulenic-euglycemic clamp. The degree of correlation is similar to that demonstrated by the QUICKI but superior to that of the HOMA index. Overall, covariables such as age generally did not influence the primary relationships. A notable exception was that correction for body mass eliminated any differences between groups for both HOMA and QUICKI, whereas the 13C glucose breath test results remained significantly different between groups ($P = 0.027$) with no significant breath test–weight interaction.

Despite correlation coefficients between the clamp and the 13C glucose breath test in the range of 0.69, such correlations give an R^2 value of 0.48, indicating that only about half the value of insulin resistance as measured by the clamp variables could be accounted for by the 13C glucose breath test. The remaining variability could be due to chance or other factors. Indeed, in the various regression models tested, sex and differences in fasting plasma glucose accounted for an additional proportion of the variability, increasing R^2 values up to the range of 0.7. The remaining variability could otherwise be due to unmeasured factors such as serum triglycerides, as has been reported (22), or could indeed result from this study for the latter two variables compare favorably to those reported in the literature. For example, in the original description of QUICKI by Katz et al. (19), the correlation coefficients between QUICKI and HOMA versus the clamp ISI were 0.78 and -0.60, respectively, which are virtually identical to the respective values of 0.79 and -0.60 obtained in this study. Katsuki et al. (21) reported a QUICKI–clamp M correlation of -0.598 in 60 Japanese diabetic patients, which increased to -0.649 when 5 subjects treated with sulfonylureas were excluded from the analysis. Bonora et al. (20) found a HOMA–clamp M correlation of -0.627 in 115 unselected individuals, although the correlation increased to -0.820 when both variables were log-transformed. Carrying out the same transformation on data from the current study similarly increased the correlation to -0.700. Thus, the consistency of results between the current clamp data and conventional measures of insulin resistance would imply that the 13C glucose breath test–clamp relationships are valid as well.

Table 1—Clinical and metabolic characteristics of study subjects

<table>
<thead>
<tr>
<th></th>
<th>Normal</th>
<th>Obese</th>
<th>Diabetic</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sex (M/F)</td>
<td>5/5</td>
<td>4/5</td>
<td>4/3</td>
<td>0.88</td>
</tr>
<tr>
<td>Age (years)</td>
<td>32.4 ± 15.8</td>
<td>47.4 ± 18.5</td>
<td>50.0 ± 23.2</td>
<td>0.12</td>
</tr>
<tr>
<td>Weight (kg)</td>
<td>72.4 ± 17.8</td>
<td>100.2 ± 17.8</td>
<td>94.6 ± 21.3</td>
<td>0.006</td>
</tr>
<tr>
<td>BMI (kg/m²)</td>
<td>23.5 ± 2.5</td>
<td>36.7 ± 6.5</td>
<td>32.1 ± 3.6</td>
<td><0.0001</td>
</tr>
<tr>
<td>Fasting serum glucose (mmol/l)</td>
<td>4.7 ± 0.5</td>
<td>6.5 ± 1.9</td>
<td>8.1 ± 2.4</td>
<td>0.002</td>
</tr>
<tr>
<td>Fasting serum insulin (mU/l)</td>
<td>5.2 ± 3.9</td>
<td>17.3 ± 18.8</td>
<td>9.1 ± 3.2</td>
<td>0.02</td>
</tr>
</tbody>
</table>

Data are means ± SD.

Table 2—Correlation coefficients between study variables

<table>
<thead>
<tr>
<th></th>
<th>Breath</th>
<th>FPG</th>
<th>Insulin</th>
<th>HOMA</th>
<th>QUICKI</th>
<th>Weight</th>
<th>BMI</th>
<th>M</th>
<th>ISI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Breath</td>
<td>1</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>FPG</td>
<td>-0.607</td>
<td>1</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Insulin</td>
<td>-0.401</td>
<td>0.128</td>
<td>1</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>HOMA</td>
<td>-0.510</td>
<td>0.402</td>
<td>0.947</td>
<td>1</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>QUICKI</td>
<td>-0.731</td>
<td>-0.593</td>
<td>-0.647</td>
<td>-0.744</td>
<td>1</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Weight</td>
<td>-0.834</td>
<td>0.310</td>
<td>0.445</td>
<td>0.478</td>
<td>-0.708</td>
<td>1</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>BMI</td>
<td>-0.716</td>
<td>0.189</td>
<td>0.493</td>
<td>0.468</td>
<td>-0.585</td>
<td>0.791</td>
<td>1</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>M</td>
<td>0.690</td>
<td>-0.672</td>
<td>-0.398</td>
<td>-0.550</td>
<td>0.691</td>
<td>-0.548</td>
<td>-0.559</td>
<td>1</td>
<td>—</td>
</tr>
<tr>
<td>ISI</td>
<td>0.694</td>
<td>-0.588</td>
<td>-0.488</td>
<td>-0.600</td>
<td>0.792</td>
<td>-0.619</td>
<td>-0.639</td>
<td>0.955</td>
<td>1</td>
</tr>
</tbody>
</table>

Breath, 13C glucose breath test result; FPG, fasting plasma glucose, insulin, fasting serum insulin.
be due to chance. Nevertheless, the same drawback in predicting insulin resistance applies to QUICKI and even more so to HOMA.

In examining Table 2, it is clear that a strong relationship exists between body weight and the \(^{13}\text{C} \)glucose breath test results. However, a similarly strong correlation is seen between QUICKI and body weight as well. Indeed, this latter phenomenon has been suggested in other studies (14,22). It might therefore be sug-

![Figure 1](image1.png)

Figure 1—Correlation between a \(^{13}\text{C} \)glucose breath result and the glucose disposal rate (M) from a hyperinsulinemic-euglycemic clamp.

![Figure 2](image2.png)

Figure 2—Correlation between a \(^{13}\text{C} \)glucose breath result and an ISI from a hyperinsulinemic-euglycemic clamp.
gested that recognition of the syndrome of insulin resistance could just as easily be accomplished by determining an individual’s weight or BMI. This would not seem to be the case because both the QUICKI and breath test correlate more strongly with the insulin clamp results than does body weight. Moreover, in multiple and logistic regression models, the [13C]glucose breath test result consistently showed a greater partial correlation with both the clamp glucose disposal rate or ISI compared with body weight or BMI. Finally, after adjusting for body weight in ANCOVA, there were still differences between the various groups of subjects and their [13C]glucose breath test results. Interestingly, a similar adjustment for body weight eliminated any differences between groups for HOMA and QUICKI. Thus, the [13C]glucose breath test would seem to detect differences among the control, obese, and diabetic subjects beyond what could be accounted for by just body weight.

Although we simplistically hypothesize that the [13C]glucose breath test results are explicable because of insulin-mediated glucose uptake and subsequent oxidation via the tricarboxylic acid cycle, the actual physiological processes that are being measured are not really known. We are confident that insulin-mediated glucose uptake is being measured, because we have carried out the [13C]glucose breath test in two nonobese type 1 diabetic individuals in the absence of insulin and could not detect any change in expired 13CO2 (values were \(-102\)‰). Thus, the contribution of non–insulin-mediated glucose uptake to the expired 13CO2 pool would appear to be inconsequential. A number of intracellular glucose disposal pathways may be abnormal in type 2 diabetes and insulin resistance, but whether the [13C]glucose breath results are influenced by such abnormalities is unknown. For example, glycogen synthesis has been reported to be reduced in type 2 diabetes (23). However, the glycogen synthetic pathway does not result in the generation of CO2. Thus, any abnormalities in this pathway would lead to enhanced glucose flux down CO2-generating pathways, which would result in increased, rather than decreased, amounts of 13CO2 being produced, as is observed in the current study. It would therefore seem unlikely that abnormalities in this pathway are of significance in determining the [13C]glucose breath results. Other pathways, such as the pentose monophosphate shunt, may be altered in type 2 diabetes (24). However, preferential metabolism via this pathway also results in CO2 generation and would likely not influence the [13C]glucose breath results either.

We presume that as for HOMA and QUICKI.

Table 3—ANOVA results for study variables when analyzed by subject category

<table>
<thead>
<tr>
<th></th>
<th>Nonobese</th>
<th>Obese</th>
<th>Diabetic</th>
<th>F</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>[13C]glucose breath (‰)</td>
<td>12.7 ± 2.9</td>
<td>7.9 ± 3.4*</td>
<td>6.3 ± 2.0*</td>
<td>11.7</td>
<td>0.0003</td>
</tr>
<tr>
<td>HOMA</td>
<td>1.12 ± 0.90</td>
<td>5.03 ± 5.00†</td>
<td>3.17 ± 1.30</td>
<td>3.8</td>
<td>0.036</td>
</tr>
<tr>
<td>QUICKI</td>
<td>0.395 ± 0.042</td>
<td>0.330 ± 0.061†</td>
<td>0.327 ± 0.021†</td>
<td>6.4</td>
<td>0.0063</td>
</tr>
<tr>
<td>M (μmol·kg⁻¹·min⁻¹)</td>
<td>76.8 ± 28.5</td>
<td>36.0 ± 27.9*</td>
<td>26.3 ± 17.4*</td>
<td>9.6</td>
<td>0.0009</td>
</tr>
<tr>
<td>ISI (μmol·kg⁻¹·min⁻¹·mU⁻¹·l⁻¹)</td>
<td>2.7 ± 1.1</td>
<td>1.0 ± 1.1*</td>
<td>0.8 ± 0.5*</td>
<td>9.8</td>
<td>0.0008</td>
</tr>
</tbody>
</table>

Data are means ± SD. *P < 0.005 vs. nonobese, †P < 0.01 vs. nonobese, ‡P < 0.05 vs. nonobese.
QUICKI, the current 13C glucose breath test result evaluates basal unstimulated insulin sensitivity as opposed to indexes derived from a glucose challenge. The amount of glucose ingested during the test is small, and measurement of plasma glucose results at the 90-min point showed a net change of -0.01 mmol (P = 0.66). Unfortunately, corresponding serum insulin levels are not available, and, thus, it cannot be determined whether an insulimimic response does not occur. It would therefore be of interest to compare 13CO$_2$ output when even less glucose is provided versus a more substantial glucose load. However, although mechanistically intriguing and perhaps providing insight into peripheral versus hepatic insulin sensitivity, for practical purposes, there is generally a good correlation between steady-state versus dynamic measures of insulin resistance (25). Nevertheless, further work will be necessary to fully determine the physiological processes that the 13C glucose breath test measures.

It is important to emphasize that the 13C glucose breath test has been carried out under conditions similar to those of the oral glucose tolerance test (namely, after an overnight fast and with no more than light activity). Additionally, the 13C glucose breath test has not been used to assess the effects of interventions designed to alter insulin sensitivity. Thus, the performance of the 13C glucose breath test under conditions of altered metabolic activity or in response to metabolic changes is unknown. This may be of significance because one study indicated a lack of correlation between QUICKI and the effects of chronic exercise on insulin sensitivity (26). On the other hand, changes in QUICKI reflective of changes in insulin sensitivity were seen by another study examining the effects of diet and exercise in diabetic subjects (21). Similarly, we did recruit diabetic individuals on oral hypoglycemic agents. It is possible that the use of these medications may have influenced the correlations. However, as mentioned, exclusion of these individuals from the analysis affected the various correlation coefficients by no more than 0.05. Additionally, because the 13C glucose breath test and the insulin clamp were carried out at the same time of day after similar periods of withholding medication, it can be anticipated that the relative insulin sensitivities during those times were also similar. Nevertheless, further study regarding the performance characteristics of the 13C glucose breath test in response to metabolic changes or medications will be necessary.

Although QUICKI may be a somewhat better predictor of insulin resistance based on the ISI, the 13C glucose breath test offers some advantages. Whereas both QUICKI and HOMA require blood sampling, the 13C glucose breath test requires only breath samples. Thus, there is no need for specially trained personnel, for blood precautions, or for specialized handling and storage of the sample. With written instructions, patients themselves could potentially carry out the 13C glucose breath test. Indeed, this is analogous to the commonly used commercial 13C urea breath tests for $H. pylori$. Similarly, once a breath sample is taken, it is stable for 90 days and requires no specialized handling. For both HOMA and QUICKI, serum must be processed within a few hours. The 13C glucose breath test may therefore be more useful in remote locations than either of the preceding tests. Similarly, in large cohort studies, it may be more advantageous to use the 13C glucose breath test whereby a number of samples can be collected and batched over time before shipment to a central analytical facility. Clearly, though, the breath test also has the disadvantage of requiring 90 min to perform versus a single sampling for both HOMA and QUICKI. On the other hand, this compares favorably with the 120 min required for an oral glucose tolerance test, the latter also requiring prompt processing of samples. The cost of the 13C glucose breath test may be considered to be of concern. Whereas an economic evaluation is beyond the scope of the current article, the manufacturer indicates that the cost is somewhat less that the commonly used 13C urea breath test for $H. pylori$ and is comparable, given caveats regarding variations in laboratory pricing, with the cost of carrying out a HOMA measurement (D. Kinniburgh, personal communication). Additionally, although we carried out 13CO$_2$ measurement using an isotope ratio mass spectrometer, the same measurement can be carried out just as accurately using a relatively cheaper nondispersive infrared spectrometer, available as a point-of-care instrument. Thus, the cost of the 13C glucose breath test will likely not be prohibitive.

In conclusion, results from the 13C glucose breath test correlate with insulin sensitivity as measured by the hyperinsulinemic-euglycemic clamp in a manner comparable to other surrogate measures of insulin sensitivity. Under certain circumstances, the 13C glucose breath test may therefore prove useful as a measure of insulin resistance. However, further studies are necessary to validate this test in a variety of settings and in a variety of circumstances.

Acknowledgments—This work was supported by a research grant from Isotechnika Inc.

We thank Terri Gammer, Donna Prokopczuk, Angela Gajek, and the staff of the University of Alberta Hospital Clinical Investigation Unit for their excellent technical assistance.

This work was presented in part at the 2003 annual meeting of the American Diabetes Association.

References

8. Alberti KG, Zimmet PZ: Definition, diag-