Efficacy of Lifestyle Education to Prevent Type 2 Diabetes

A meta-analysis of randomized controlled trials

Kazue Yamaoka, PhD
Toshiro Tango, PhD

OBJECTIVE — To evaluate the efficacy of lifestyle education for preventing type 2 diabetes in individuals at high risk by meta-analysis of randomized controlled trials, as assessed by incidence and a reduced level of plasma glucose 2 h after a 75-g oral glucose load (2-h plasma glucose).

RESEARCH DESIGN AND METHODS — Through an electronic search, 123 studies were identified. A literature search identified eight studies that met strict inclusion criterion of meta-analysis for 2-h plasma glucose and five studies for the incidence of diabetes. All were randomized controlled trials of ≥6 months with lifestyle education that included a dietary intervention. Subjects were adults diagnosed as being at high risk for type 2 diabetes. The difference in mean reduction of 2-h plasma glucose from baseline to the 1-year follow-up and relative risk (RR) of the incidence of diabetes in the lifestyle education group versus the control group were assessed. Overall estimates were calculated using a random-effects model. Those estimates were confirmed by several models, and the possibility of selection bias was examined using a funnel plot.

RESULTS — Lifestyle education intervention reduced 2-h plasma glucose by 0.84 mmol/l (95% CI 0.39–1.29) compared with the control group. The 1-year incidence of diabetes was reduced by ~50% (RR 0.55, 95% CI 0.44–0.69) compared with the control group. Results were stable and little changed if data were analyzed by subgroups or other statistical models. Funnel plots revealed no selection bias.

CONCLUSIONS — Lifestyle education was effective for reducing both 2-h plasma glucose and RR in high-risk individuals and may be a useful tool in preventing diabetes.

Diabetes Care 28:2780–2786, 2005

Type 2 diabetes is increasing worldwide largely as a result of increasing obesity and a sedentary lifestyle. Nutritional therapy for diabetic patients was recommended by the American Diabetes Association (1). Considering the severity of the illness and low quality of life among diabetic patients, primary prevention of the development of type 2 diabetes is important. For this purpose, lifestyle education (combined diet and exercise) can be considered a powerful tool. Beginning with the impressive study in Da Qing, China (2), the benefits of lifestyle modification have been assessed. Some recent studies based on randomized controlled trials for high-risk subjects revealed the potential for prevention of type 2 diabetes. In a previous study, we conducted a randomized controlled trial of a new dietary education program to reduce plasma glucose levels in Japanese male workers, and we showed that the new dietary education could reduce glucose levels by effecting changes in the total energy intake of individuals at high risk for type 2 diabetes (3). Most current lifestyle education interventions are based on a combination of dietary education with exercise. However, the effects are still controversial.

From the Department of Technology Assessment and Biostatistics, National Institute of Public Health, Wako, Saitama, Japan.

Address correspondence and reprint requests to Kazue Yamaoka, PhD, Department of Technology Assessment and Biostatistics, National Institute of Public Health, 2-3-6 Minami, Wako, Saitama 351-0197, Japan. E-mail: yamaoka@niph.go.jp.

Received for publication 6 May 2005 and accepted in revised form 8 August 2005.

Abbreviations: DPPRB, Diabetes Prevention Program Research Group; IFG, impaired fasting glucose; IGT, impaired glucose tolerance.

A table elsewhere in this issue shows conventional and Système International (SI) units and conversion factors for many substances.

© 2005 by the American Diabetes Association.
borderline type corresponds to the sum of IFG plus IGT (6).

Types of studies. Randomized controlled trials that followed patients for ≥6 months were included. Randomization of individuals or clusters of individuals was accepted.

Types of intervention. Lifestyle (combined diet and exercise) or solely dietary education interventions were selected. Control interventions were those described above.

Search strategy for identification of studies. Medline and ERIC (Educational Resources Information Center) databases (January 1966 to November 2004) were searched to identify relevant literature (restricted to the English language). Search terms were free text terms, MeSH (Medical subject heading), and Medline medical index terms. For instance, diabetes, IGT, IFG, borderline, etc. for type 2 diabetes and related conditions; exercise, physical fitness, nutrition, diet, etc., for lifestyle interventions; and prevention and randomized controlled trials were used as search terms.

Statistical analysis

Overall estimates were examined using a fixed-effects model (general variance-based method), a random-effects model (DerSimonian-Laird method) (7), and a Bayesian model with noninformative priors (Monte Carlo Markov chain) (8). A χ^2 test was used to assess heterogeneity among trials. Considering that the fixed-effects model is useful only under conditions of homogeneity and that the power of statistical tests of heterogeneity is low, we planned to use the random-effects model as the primary method irrespective of the test result of heterogeneity. We used the other models for sensitivity analyses. S-plus (9) was used for estimation of the random-effects model and the fixed-effects model, and WinBUGS (10) was used for the Bayesian model (burn-in sample = 1,000, number of Gibbs sampling = 10,000).

The measure of effect size for 2-h plasma glucose is given by the difference between the lifestyle education intervention group and control group (Δ_i) for each individual study, which is equal to $\Delta_i = \Delta_{pre} - \Delta_{post}$, where Δ_{pre} and Δ_{post} are mean differences from baseline to end point (basically at 1 year) in 2-h plasma glucose between, respectively, the lifestyle education intervention and control groups. When the SD of the difference from baseline to end point was not given in the literature, it was calculated using SD_{pre} (SD of the baseline 2-h plasma glucose) and SD_{post} (SD of the end point) for each group, using the formula $SD^2 = SD_{pre}^2 + SD_{post}^2 -$.
Efficacy of lifestyle education to prevent type 2 diabetes

Table 1—Characteristics of the nine randomized controlled trials*

<table>
<thead>
<tr>
<th>Study (ref. no.)</th>
<th>Randomized subjects</th>
<th>Inclusion criteria</th>
<th>Follow-up duration (years)</th>
<th>Diabetes incidence (r/n)†</th>
<th>2hPG (mmol/l)</th>
<th>Difference from baseline at 1 year (means ± SD) (n)‡</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Control</td>
<td>Intervention</td>
<td>Baseline</td>
</tr>
<tr>
<td>Pan et al. (2)</td>
<td>577§</td>
<td>M&F, IGT</td>
<td>6</td>
<td>90/133</td>
<td>58/130</td>
<td>C: 9.03 ± 0.89</td>
</tr>
<tr>
<td>Wein et al. (13)</td>
<td>200</td>
<td>Female, IGT</td>
<td>4.25</td>
<td>7/100</td>
<td>6/100</td>
<td>C: 9.8 ± 0.74</td>
</tr>
<tr>
<td>Lindahl et al. (14)</td>
<td>186</td>
<td>M&F, BMI >27, age 30–60, IGT</td>
<td>1</td>
<td>NA</td>
<td>NA</td>
<td>C: 8.0 ± 11.09</td>
</tr>
<tr>
<td>Oldroyd et al. (15)</td>
<td>78</td>
<td>M&F, age 24–75, IGT</td>
<td>0.5</td>
<td>NA</td>
<td>NA</td>
<td>C: 9.2 ± 0.9</td>
</tr>
<tr>
<td>Tuomilehto et al. (16)</td>
<td>522</td>
<td>M&F, BMI >25, age 40–64, IGT</td>
<td>6**</td>
<td>51/257</td>
<td>22/265</td>
<td>C: 8.9 ± 1.5</td>
</tr>
<tr>
<td>Swinburn et al. (17)</td>
<td>176</td>
<td>M&F, age ≥40, IGT + (2hPG 7.0–7.8 mmol/l)</td>
<td>1</td>
<td>NA</td>
<td>NA</td>
<td>C: 7.5 ± 2.4</td>
</tr>
<tr>
<td>Mensink et al. (18)</td>
<td>114</td>
<td>M&F, BMI >25, age ≥40, IGT</td>
<td>3</td>
<td>NA</td>
<td>NA</td>
<td>C: 8.6 ± 1.48</td>
</tr>
<tr>
<td>Watanabe et al. (3)</td>
<td>173</td>
<td>Male, age 35–70, borderline</td>
<td>1</td>
<td>6/87</td>
<td>3/86</td>
<td>C: 7.3 ± 1.7</td>
</tr>
<tr>
<td>DPPRG (19)</td>
<td>3,234§</td>
<td>M&F, age ≥25, BMI ≥24, Asian ≥22, 27 centers, IFG</td>
<td>2.8</td>
<td>313/1,082‡</td>
<td>155/1,079‡</td>
<td>C: 9.1 ± 0.9</td>
</tr>
</tbody>
</table>

*Nine studies were reported in 22 published articles. One article is listed as a representative of the relevant study. *Incidence of type 2 diabetes: r/n = (number of cases divided by total number of analyzed subjects). †Except for the studies by Pan (2) = 6 years, Wein (13) = average 4.5 years, and Oldroyd (15) = 6 months. §Including other intervention types. ¶SD for the mean difference was calculated using SD in each point. ‡SD was calculated using 95% CIs. †Strong intervention was performed during the 1st year. **Calculated from incidence. C, control; D, solely dietary education intervention; L, lifestyle education (combined diet and exercise) intervention; M&F, male and female.

2SDpooled/SDpooled, where r is the correlation between the baseline and endpoint groups. Because no study reported r, and its true value is unknown, we consulted our past study data and used r = 0.5. For this, a sensitivity analysis was performed, using r = 0.3 and r = 0.7. If the 95% CI was shown instead of SD, SD was calculated using the formula SD = (\(\sqrt{n}\)) (95% CIupper − 95% CIlower) ÷ 4, where n denotes sample size of a group.

Net change in 2-h plasma glucose or RR is shown for each individual study, with lines extending from circles representing 95% CIs in the Forest plot. A cumulative meta-analysis by the random-effects model (11) was also performed to determine at which point (when sufficient evidence was available) to demonstrate a beneficial lifestyle education intervention effect. Subgroup analysis by intervention type, i.e., diet versus lifestyle (combined diet and exercise) and follow-up duration (<1 vs. ≥2 years), was conducted as a sensitivity analysis. The selection bias was visually examined using the funnel plot.

RESULTS — Following the QUOROM guidelines (12), Fig. 1 depicts the flow diagram for this review. Eight studies (2,3,13–18) met strict inclusion criteria for the analysis of 2-h plasma glucose and five studies (2,3,13,16,19) for the analysis.
In this process, one study was selected among studies that published results from the same trial, and one intervention (having priority on lifestyle intervention over the diet-alone intervention) was selected from a study. The general characteristics and outcomes of the studies are shown in Table 1.

Type of intervention
Lifestyle education interventions of the selected studies varied widely. Lifestyle education (combined diet and exercise) was conducted in seven studies (2,13–16,18,19), and a solely lifestyle education intervention was carried out in two studies (3,17). Details of the type of intervention are summarized in Table 1.

2-h plasma glucose
Two studies (2,13) did not report the SD of the differences from baseline to endpoint, so the SD was calculated from SD-pre and SD-post. Two studies (13,14) showed the 95% CI instead of SD; thus, SD was calculated from 95% CI-upper and 95% CI-lower. In the eight studies (2,3,13–18) in which the 2-h plasma glucose level was determined, evidence of heterogeneity among the studies was shown (P < 0.001). Figure 2 shows the net change in 2-h plasma glucose, results of cumulative meta-analysis, and overall estimates for 2-h plasma glucose by several models. The estimates from the random-effects model are shown, with lines extending from quadrangular symbols representing 95% CIs. The ranges of 95% CIs of the overall estimates for several models are shown with the solid line between the diamond symbols in the figure. In calculating overall estimates for 2-h plasma glucose, the results were insensitive to r in the range we expected (0.3–0.7); therefore, data are presented with the value of r = 0.5. Cumulative analysis indicated that from the last four studies, overall estimates became significant. Overall, a

<table>
<thead>
<tr>
<th>Age (years)</th>
<th>BMI (kg/m²)</th>
<th>Type of intervention</th>
<th>Dietary education</th>
<th>Exercise education</th>
<th>Control</th>
</tr>
</thead>
<tbody>
<tr>
<td>45</td>
<td>26</td>
<td>Dietary + exercise</td>
<td>Reducing energy intake</td>
<td>Increase leisure physical exercise at least 1 unit/day</td>
<td>General instructions for diet and/or increased leisure physical activities</td>
</tr>
<tr>
<td>39</td>
<td>25</td>
<td>Dietary + exercise</td>
<td>Standard diet advice sheet with telephone contact (three per month)</td>
<td>Emphasizing need for regular exercise</td>
<td>Regular exercise and standard diet advice</td>
</tr>
<tr>
<td>55</td>
<td>31</td>
<td>Dietary + exercise</td>
<td>Low-fat, high-fiber diet</td>
<td>Regular exercise with a program implemented during a 1-month stay at a wellness center that included intense dietary learning sessions</td>
<td>Standard program including counseling session for 30–60 min conducted by a specially trained nurse</td>
</tr>
<tr>
<td>58</td>
<td>30</td>
<td>Dietary + exercise</td>
<td>Regular diet counseling from a dietician</td>
<td>Physical activity counseling from a physiotherapist</td>
<td>General instructions for diet and/or increased leisure physical activities</td>
</tr>
<tr>
<td>55</td>
<td>31</td>
<td>Dietary + exercise</td>
<td>Individualized dietary counseling from a nutritionist</td>
<td>Circuit-type resistance training sessions and advice on increasing overall physical activity</td>
<td>General dietary and exercise advice at baseline and an annual physician’s examination</td>
</tr>
<tr>
<td>52</td>
<td>29</td>
<td>Dietary alone</td>
<td>Reduced-fat diet and participation in monthly small-group education session for 1 year</td>
<td>None</td>
<td>General dietary advice about health food choices</td>
</tr>
<tr>
<td>57</td>
<td>29</td>
<td>Dietary + exercise</td>
<td>Regular dietary advice</td>
<td>Stimulated to lose weight and increase physical activity with visits scheduled at regular intervals</td>
<td>Brief information about the beneficial effects of a healthy diet and increased physical activity</td>
</tr>
<tr>
<td>55</td>
<td>24</td>
<td>Dietary alone</td>
<td>Reducing energy intake, especially at dinner</td>
<td>None</td>
<td>Conventional group counseling</td>
</tr>
<tr>
<td>50</td>
<td>34</td>
<td>Dietary + exercise</td>
<td>Weight reduction through a healthy low-calorie, low-fat diet</td>
<td>Engage in physical activity of moderate intensity by individualized curriculum by case managers</td>
<td>Written information for standard lifestyle recommendation and an annual 20- to 30-min individual session emphasizing importance of a healthy lifestyle</td>
</tr>
</tbody>
</table>
1-year lifestyle education intervention reduced 2-h plasma glucose by 0.84 mmol/l (95% CI 0.39–1.29) compared with the control intervention, as determined by the random-effects model. Concordant results were obtained by other models, i.e., a 0.80 mmol/l (0.58–1.01) reduction was estimated by the fixed-effects model and a 0.84 mmol/l (0.39–1.32) reduction by the Bayesian model. All of the overall estimates denoted a significant reduction of 2-h plasma glucose in the lifestyle education intervention groups compared with control groups. Because there was evidence of heterogeneity in this combined analysis, subgroup analyses were conducted to analyze sensitivity. Overall estimates of 2-h plasma glucose were obtained according to the length of the study (1 year for five studies and >1 year [6 and 4.25 years] for two studies) and by the types of intervention (lifestyle education for six studies and solely dietary education for two studies.) Excluding studies that exceeded 1 year (two studies), the results still showed a significant reduction in 2-h plasma glucose, except those for the Bayesian model. A funnel plot of sample size against the effect size was examined (figure not shown). From observations of data, selection bias did not largely affect the results of the present study. In addition, the related factors of mean age, study publication year, baseline value of 2-h plasma glucose, and BMI varied, and these factors were visually examined. From an observational point of view, the results detected no bias (figures not shown).

RR

In the five studies (2,3,13,16,19) in which the incidence was obtained, analysis showed no evidence of heterogeneity among studies (P = 0.145). Figure 3 shows RRs of each study, the result of cumulative meta-analysis, and overall RRs by several models. The cumulative meta-analysis indicated significant effects in all cases. All of the results indicated that lifestyle education groups had a relatively lower incidence than control groups. The risk of incidence of type 2 diabetes in the lifestyle education intervention group was reduced by ∼50% (RR = 0.55 [95% CI 0.44–0.69]) compared with the control intervention group by the random-effects model. The results from other models were similar. Specifically, RR was estimated as 0.55 (0.48–0.63) by the fixed-effects model and 0.55 (0.41–0.74) by the Bayesian model. Because there was one mega-study conducted by the Diabetes Prevention Program Research Group...
analyzed in the present study were de-

CONCLUSIONS — This meta-analy-
sis provided evidence of the efficacy of lifestyle education for individuals at high-risk of type 2 diabetes in reducing 2-h plasma glucose and RR. It reduced 2-h plasma glucose by ~ 0.84 mmol/L (95% CI $0.39–1.29$) and also the incidence of type 2 diabetes by $\sim 50\%$ (RR 0.55 [$0.44–0.69$]) compared with the control group, as determined by the random-effects model. Significant effects were also obtained by other models. Although the interventions and methods of lifestyle education varied in these studies, these results indicate that lifestyle education as well as a solely dietary education improved 2-h plasma glucose and reduced the risk of type 2 diabetes in high-risk individuals.

Although lifestyle education for high-risk subjects is an accepted cornerstone of prevention of type 2 diabetes as well as treatment of type 2 diabetes, a formal and systematic overview of its efficacy and method of delivery has not been available. Our study provides evidence of a relationship between lifestyle education in high-risk subjects and the prevention of type 2 diabetes.

Several meta-analyses have been published on the effects of lifestyle education on HbA1c for diabetic patients (20), low-glycemic index diets in the management of diabetes (21), and glucose and insulin responses to dietary chromium supplements (22). Although the purpose, methods, and types of subjects differed, there was evidence that not only clinical care but also lifestyle education is effective. Our study aimed at examining lifestyle education for those at high risk of type 2 diabetes. Considering the poor quality of life of diabetic patients, preventing the development of this disease is important, and much more attention should be paid to lifestyle education.

Many individuals at high risk for dia-
betes are designated as having what is now called metabolic syndrome, and, re-
cently, considerable attention has been paid to this syndrome. The primary end points of the randomized controlled trials analyzed in the present study were de-
signed as 2-h plasma glucose and/or inci-
dence of type 2 diabetes. Therefore, we cannot examine the effects of lifestyle edu-
cation on the metabolic syndrome. Obes-
ity is one component of the metabolic syndrome. Many studies examined BMI as one of the secondary end points. Some of the individual studies (13–15,17) did not find a significant effect of lifestyle edu-
cation on 2-h plasma glucose, but they did find that it affected BMI. This means that a weak effect of lifestyle intervention on weight loss may exist. Further study of the metabolic syndrome is needed to de-
fine effective interventions for this condi-
tion.

Many of the studies included in this meta-analysis involve only a small num-
ber of subjects, with the exception of one mega-trial (19), which was used for anal-
ysis of RR in this report. The results, when excluding the mega-study, were also sig-
nificant. The findings suggest the clinical benefits of lifestyle education. There has been extensive discussion of the differ-
ences between meta-analyses and mega-
trials (23). Selective nonpublication of negative trials seems to be a likely expla-
nation for that. Our results suggest that the meta-analyses of small trials is concor-
dant with the results of the DPPRG, for which we examined the random-effects model as well as the fixed-effects model and Bayesian model.

The strengths and limitations of this meta-analysis should be considered. Our study has several strengths. As far as we know, this is the first study to examine the effects of lifestyle education for individu-
als at high risk of type 2 diabetes by meta-
analysis, although the education reported in the studies was not uniform. We also focused attention on two types of view-
points: 2-h plasma glucose and incidence. Considering that those with higher values for 2-h plasma glucose are more likely to develop diabetes, it is meaningful that both glucose level and incidence indic-
ated the effect of lifestyle education when compared with control subjects.

This study has several important lim-
itations. This analysis was confined to En-
lish-language articles, which could intro-
duce bias. Furthermore, only ran-
domized controlled trials were included, which could also introduce bias. How-
ever, considering that the quality of stud-
ies of lifestyle education as well as solely dietary education may be affected by many confounding biases, these limitations may be acceptable. From the visual observations by plots on the effect of life-

style education against the factors on the effect size, the results were not greatly af-
fected by those factors. Publication bias is always a concern in meta-analyses. We performed electronic searches, including a hand search, and examined by funnel plot sample size against effect size. The funnel plot suggested little influence from publication bias on the effect size. Al-
though it may be small, we cannot deny the possibility of selection bias. Our study has a limitation in that the follow-up pe-
riod extended for ≥ 6 months; however, this may be acceptable because an earlier assessment could be biased as a result of changes made only because subjects were conscious of being studied. In the preven-
tion of diabetes, maintaining long-term control is warranted. Another limitation, which was the variability of lifestyle edu-
cation, was examined by subgroup anal-
yses. Although the quality of lifestyle education varied, the results indicated that it was effective.

Taking these limitations into account, the meta-analysis provided objective evi-
dence that lifestyle education for reducing 2-h plasma glucose and the incidence of type 2 diabetes in groups of high-risk individu-
als is effective and may be a useful tool for preventing type 2 diabetes. Ap-
proaches that include lifestyle education with the goal of preventing the develop-
ment of type 2 diabetes should be given more attention.

Acknowledgments — This study was sup-
ported by a Ministry of Health, Labor, and Welfare in Japan grant-in-aid for scientific re-

References
S46, 2004
2. Pan XR, Li GW, Hu YH, Wang JX, Yang
WY, An ZX, Hu ZX, Lin J, Xiao JZ, Cao
HB, Liu PA, Jiang XG, Jiang YY, Wang JP,
Zheng H, Zhang H, Bennett PH, Howard
BV: Effects of diet and exercise in prevent-
ing NIDDM in people with impaired glu-
cose tolerance: the Da Qing IGT and Diabetes Study. Diabetes Care 20:
537–544, 1997
3. Watanabe M, Yamaoka K, Yokotsuka M,
Tango T: Randomized controlled trial of a new dietary education program to prevent type 2 diabetes in a high-risk group of Japanese male workers. Diabetes Care 26:
3209–3214, 2003 [erratum in Diabetes
Care 27:856, 2004]
Efficacy of lifestyle education to prevent type 2 diabetes

