Early Microvascular Dysfunction in Healthy Normal-Weight Males With Heredity for Type 2 Diabetes

GUN JÖRNESKOG, MD, PHD1
MAJID KALANI, MD, PHD2
JEANETTE KUHL, MD3
PETER BÄVENHOLM, MD, PHD4
ABRAM KATZ, MD, PHD5
GUSTAF ALLERSTRAND, MD1
MICHAEL ALVARSSON, MD, PHD5
SUAD EFENDIC, MD, PHD3
CLAES-GÖRAN ÖSTENSON, MD, PHD3
JOHN PERNOW, MD, PHD2
JOHN WAHREN, MD, PHD6
KERSTIN BRISMAR, MD, PHD3

From the 1Department of Internal Medicine, Danderyd University Hospital, Karolinska Institute at Danderyd Hospital, Stockholm, Sweden; the 2Department of Cardiology, Karolinska University Hospital Solna, Karolinska Institute, Stockholm, Sweden; the 3Department of Endocrinology and Diabetology, Karolinska University Hospital Solna, Karolinska Institute, Stockholm, Sweden; the 4Department of Internal Medicine, Karolinska University Hospital Solna, Karolinska Institute, Stockholm, Sweden; the 5Department of Physiology and Pharmacology, Karolinska University Hospital Solna, Karolinska Institute, Stockholm, Sweden; and the 6Department of Surgical Sciences, Karolinska University Hospital Solna, Karolinska Institute, Stockholm, Sweden. Address correspondence and reprint requests to Gun Jörneskog, MD, PhD, Department of Internal Medicine, Danderyd University Hospital, S-18288 Stockholm, Sweden. E-mail: gun.jorneskog@ds.se.

Received for publication 21 February 2005 and accepted in revised form 9 March 2005.

Abbreviations: Ach, acetylcholine; CBV, capillary blood cell velocity; FMD, flow-mediated vasodilation; SNP, sodium nitroprusside.

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked “advertisement” in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

© 2005 by the American Diabetes Association.

The pathogenesis behind diabetic microangiopathy is complex; both genetic (1–3) and metabolic factors (4–6) are clearly of importance. Recently, it has been demonstrated that not only patients with diabetes but also healthy individuals at risk for diabetes have functional vascular disturbances (7). These findings suggest that factors other than hyperglycemia are of importance for microvascular dysfunction. The aim of the present study was to investigate whether genetic factors (heredity for type 2 diabetes) are associated with disturbances in nutritive skin capillary circulation, nonnutritive skin microcirculation, and/or brachial microcirculation.

RESEARCH DESIGN AND METHODS — Subjects were from the Stockholm Diabetes Prevention Program, a population-based study (8). Normal-weight men who were free of diabetes, who were nonsmokers, and who had normal oral glucose tolerance tests and insulin sensitivity as assessed by a hyperinsulinemic-euglycemic clamp (9) were investigated. Ten men with heredity for type 2 diabetes were matched for age and BMI with 10 men without heredity. Heredity for type 2 diabetes was defined as known diabetes in at least two second-degree relatives (grandparent, uncle, or aunt) or in at least one first-degree relative (offspring, brother) or the parents (8).

The investigations were performed in the morning after an overnight fast. The vascular investigations were performed 20 min after supine rest at a room temperature of 22–24°C. Nonnutritive skin microcirculation of the left forearm was studied with laser Doppler perfusion imaging before and after iontophoretic application of acetylcholine (Ach; endothelium dependent) and sodium nitroprusside (SNP; nonendothelium dependent) (10,11). An electrode chamber (Perilont 382; Perimed, Järfälla, Sweden) was filled with a small volume (~250 μl) of either Ach 1% (55 mmol/l) or SNP 1% (33 mmol/l) and attached to the volar side of the forearm. A battery-powered iontophoresis controller (Perimed) provided a direct current (0.2 mA for 60 s) for drug iontophoresis. The changes in skin blood cell flux before and after iontophoresis were studied by laser Doppler perfusion imaging (Lisca PIM II; Lisca Development, Linköping, Sweden). The coefficients of variation (CVs) for peak microcirculatory flux after iontophoresis of Ach and SNP were 21 and 19%, respectively (11).

Nailfold capillaries of the fourth finger of the left hand were visualized (12), and the capillary blood cell velocity (CBV) was determined by a computerized, videophotometric, cross-correlation technique (Capiflow, Stockholm, Sweden). Resting CBV was measured in suitable capillaries with good contrast and visible signals (12–14), and peak CBV (in millimeters per second) and time-to-peak CBV (in seconds) were measured following release of 1-min arterial occlusion of the proximal phalanx of the finger with a cuff pressure of 200 mmHg (13,15–17). For reproducibility see Jörneskog and colleagues (13,15).

Endothelial function of macrocirculation was studied by ultrasound during flow-mediated vasodilatation (FMD) of the brachial artery (18,19). The inner diameter of the brachial artery was determined before and 1 min following forearm ischemia using an 8-MHz transducer. Nonendothelium-dependent dilation was determined 4 min after administration of sublingual nitroglycerine (0.4 mg). The mean variation of FMD was 1.8 ± 1.0%, and the CV was 26%.

Data are given as means ± SD. The Mann-Whitney U test was used to test differences between groups. Microcirculatory variables measured during iontophoresis were evaluated with two-factor repeated-measures ANOVA. A value of P < 0.05 was considered statistically significant.

RESULTS — There were no significant differences in age (with heredity, 53 ± 5.0 vs. without heredity, 51 ± 3.8 years), waist-to-hip ratio (0.86 ± 0.04 vs. 0.85 ±
Vascular function and diabetes heredity

CONCLUSIONS — The studies of micro- and macrovascular function in healthy normal-weight middle-aged men showed that the subjects with diabetes heredity exhibited impaired microvascular responses to both endothelium- and nonendothelium-dependent stimuli in nonnutritive skin microcirculation whereas no disturbances could be detected in the nutritive capillary circulation or in the macrocirculation (brachial artery). The functional disturbances in nonnutritive skin microcirculation were demonstrated despite normal body dimensions, normal glucose tolerance, and normal insulin sensitivity. Nonnutritive microcirculation includes arterioli and arteriovenous connections, which have different regulation and morphology compared with capillaries and macrocirculation. Alternatively, the small sample size of our study may have precluded detection of disturbances in macrovascular reactivity. In summary, genetic factors may contribute to the early functional microvascular abnormalities in the development of type 2 diabetes and/or cardiovascular disease.

Acknowledgments — The study was supported by grants from the Swedish Research Council, the Stockholm County Council, the Swedish Diabetes Association, the Fam S. Persson Foundation, and the Novo Nordisk Foundation Consortium.

References

14. Richardson D, Schwartz R: Comparison of resting capillary flow dynamics in the...

