High-Sensitivity C-Reactive Protein and Coronary Heart Disease Mortality in Patients With Type 2 Diabetes

A 7-year follow-up study

MINNA SOINIO, MD1
JUKKA MARNIEMI, PhD2
MARKUU LAAKSO, MD3

SEPPO LEHTO, MD3
TAPANI RÖNNEMAA, MD1

OBJECTIVE — To investigate in a follow-up study whether high-sensitivity C-reactive protein (hs-CRP) predicts coronary heart disease (CHD) events in subjects with type 2 diabetes.

RESEARCH DESIGN AND METHODS — The original study population consisted of 1,059 patients with type 2 diabetes (age 45–64 years). Mean duration of diabetes was 8 years. CRP values were available from 1,045 subjects, of whom 878 were free of myocardial infarction (MI) at baseline. CHD mortality and the incidence of nonfatal MI were assessed in a 7-year follow-up.

RESULTS — Altogether, 157 patients died from CHD and 254 had a nonfatal or fatal CHD event. Patients with hs-CRP >3 mg/l had a higher risk for CHD death than patients with hs-CRP ≤3 mg/l (19.8 and 12.9%, respectively, \(P = 0.004 \)). In Cox regression analysis, patients with high hs-CRP had a relative risk of 1.72 for CHD death even after the adjustment for confounding factors (\(P = 0.002 \)). Among subjects who were free from MI at baseline, those with a high hs-CRP level had relative risks of 1.83 (\(P = 0.003 \)) and 1.84 (\(P = 0.004 \)) for CHD death in univariate and multivariate analyses, respectively.

CONCLUSIONS — In this large cohort of type 2 diabetic patients, hs-CRP was an independent risk factor for CHD death.

Inflammation has been established to play an important role in the pathogenesis of atherosclerosis (1,2). There are many systemic markers of inflammation, but most promising of these is high-sensitivity C-reactive protein (hs-CRP), which has been found to independently predict future coronary heart disease (CHD) events in several prospective studies that included nondiabetic subjects (3–5). Patients with type 2 diabetes have two- to fourfold increased risk for CHD, and >50% of all diabetic patients die of CHD (6). Levels of CRP are increased in type 2 diabetes (7). Prospective studies on the predictive value of hs-CRP for CHD events in patients with type 2 diabetes are scanty; there are only few studies reporting an association between elevated CRP and cardiovascular events in patients with type 2 diabetes (8–10).

In a large long-term follow-up study, we examined whether hs-CRP predicts CHD mortality and other CHD events in patients with type 2 diabetes.

From the 1Department of Medicine, University of Turku, Turku, Finland; the 2Department of Health and Functional Capacity, National Public Health Institute, Turku, Finland; and the 3Department of Medicine, University of Kuopio, Kuopio, Finland.

Address correspondence and reprint requests to Dr. Minna Soinio, Department of Medicine, Turku University Central Hospital, P.O. Box 52, FIN-20521 Turku, Finland. E-mail: minna.soinio@tyks.fi.

Received for publication 12 September 2005 and accepted in revised form 26 October 2005.

Abbreviations: CHD, coronary heart disease; CRP, C-reactive protein; hs-CRP, high-sensitivity CRP; MI, myocardial infarction.

A table elsewhere in this issue shows conventional and Système International (SI) units and conversion factors for many substances.

© 2006 by the American Diabetes Association.

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked “advertisement” in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.
High-sensitivity CRP and CHD in type 2 diabetes

Table 1—hs-CRP, cardiovascular risk factors, and other clinical characteristics of men and women with type 2 diabetes at baseline in relation to CHD mortality

<table>
<thead>
<tr>
<th></th>
<th>CHD death in men</th>
<th>CHD death in women</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No (n = 476)</td>
<td>Yes (n = 96)</td>
</tr>
<tr>
<td>hs-CRP (mg/l)</td>
<td>3.12 ± 6.06</td>
<td>4.10 ± 4.86</td>
</tr>
<tr>
<td>Age (years)</td>
<td>57.1 ± 5.1</td>
<td>58.6 ± 4.6</td>
</tr>
<tr>
<td>Duration of diabetes (years)</td>
<td>7.9 ± 4.1</td>
<td>8.9 ± 4.8</td>
</tr>
<tr>
<td>Total cholesterol (mmol/l)</td>
<td>6.3 ± 1.3</td>
<td>7.1 ± 1.5</td>
</tr>
<tr>
<td>HDL cholesterol (mmol/l)</td>
<td>1.18 ± 0.34</td>
<td>1.10 ± 0.31</td>
</tr>
<tr>
<td>Triglyceride (mmol/l)</td>
<td>2.22 ± 1.84</td>
<td>3.02 ± 2.12</td>
</tr>
<tr>
<td>HbA1 (%)</td>
<td>9.6 ± 2.3</td>
<td>10.0 ± 1.9</td>
</tr>
<tr>
<td>BMI (kg/m²)</td>
<td>28.2 ± 4.3</td>
<td>28.6 ± 4.8</td>
</tr>
<tr>
<td>Current smokers (%)</td>
<td>24.6</td>
<td>25.0</td>
</tr>
<tr>
<td>Hypertension (%)</td>
<td>56.1</td>
<td>60.4</td>
</tr>
<tr>
<td>Hypolipidemic therapy (%)</td>
<td>1.3</td>
<td>1.0</td>
</tr>
<tr>
<td>Aspirin therapy (%)</td>
<td>2.3</td>
<td>4.2</td>
</tr>
</tbody>
</table>

Data are means ± SD unless otherwise indicated.

Follow-up study
In 1990, a questionnaire about hospitalization for acute chest pain was sent to every surviving participant of the original study cohort. All medical records of those subjects who died between the baseline examination and 31 December 1989 or who reported in the questionnaire that they had been admitted to the hospital because of chest pain between the baseline examination and 31 December 1989 were reviewed by one of the investigators (S.L.). The modified World Health Organization criteria for definite or possible MI were used in a manner similar to that in the baseline study. In the final classification of the causes of death, hospital records and autopsy records were used, if available. Copies of death certificates of those patients who had died were obtained from the Central Statistical Office of Finland. To ensure that the data collection was complete, a computerized hospital discharge register was used to check for hospital admissions of all participants in the baseline study. In cases of diagnoses suggesting MI, medical records were also checked.

The Joint Commission on Ethics of the Turku University and Turku University Central Hospital and the Ethics Committee of the University of Kuopio approved the study. Informed written consent was obtained from all participants.

Statistical analyses
All statistical analyses were performed using SPSS for Windows (version 10.0; SPSS, Chicago, IL). Data of continuous

![Figure 1](https://example.com/figure.png)
variables are expressed as means (±SD). Differences between groups were assessed by the Student's t test for independent samples. hs-CRP and triglyceride levels were analyzed after logarithmic transformation because of their skewed distribution. American Heart Association recommendations (15) for hs-CRP cut points of low risk (<1.0 mg/l), average risk (1.0–3.0 mg/l), and high risk (>3.0 mg/l), which approximately corresponded to tertiles in our study, were used in statistical analyses. The χ² test was used to compare categorical variables. Univariate and multivariate Cox regression analyses were performed to investigate the association between CHD risk factors and the time to CHD events.

RESULTS — During the 7-year follow-up 157 patients died from CHD and 254 patients had a nonfatal or fatal CHD event. Table 1 presents hs-CRP levels and background data of the study sample in relation to CHD mortality during the 7-year follow-up. In men, the mean hs-CRP was statistically significantly higher in patients with type 2 diabetes who died of CHD than in those who did not. The difference in women was not statistically significant. In men, the mean hs-CRP level was statistically significantly higher in those who had the combined end point, a fatal or nonfatal MI, compared with those who did not (P = 0.024). In women, this difference was not statistically significant.

When we divided hs-CRP into low-, average-, and high-risk groups (<1.0, 1.0–3.0, and >3.0 mg/l, respectively), CHD mortality rates were 12.7, 13.1, and 19.8%, respectively (overall P = 0.015) (Fig. 1). CHD mortality or nonfatal MI rates in corresponding groups were 22.9, 22.8, and 27.6% (P = 0.262).

We then compared the CHD mortality rate in patients with type 2 diabetes whose hs-CRP levels were >3.0 mg/l with those whose hs-CRP levels were ≤3.0 mg/l. The CHD mortality rate was ~1.6-fold higher in patients with hs-CRP levels >3.0 mg/l (P = 0.004). Results were similar if we excluded patients who already had a history of MI at baseline (P = 0.004).

In Cox regression analysis (men and women combined), patients with type 2 diabetes whose hs-CRP levels were >3.0 mg/l had higher CHD mortality rate when adjusted for age and sex (P = 0.001) (Table 2). Further adjustment for total cholesterol level, HDL cholesterol level, triglyceride level, duration of diabetes, HbA1 level, hypertension, smoking, BMI, and area of residence did not alter the association (P = 0.002). Corresponding analyses were performed in patients who did not have a history of MI at baseline, and the results were similar to those obtained in the whole cohort (P = 0.004). Adding aspirin to the multivariate analysis did not alter the results in our study (P = 0.002 in the entire study population, P = 0.005 in patients with no MI at baseline).

Figure 2 shows the Kaplan-Meier estimates for the probability of CHD death in men and women with type 2 diabetes whose hs-CRP levels were >3.0 mg/l and ≤3.0 mg/l. Those patients with hs-CRP levels >3.0 mg/l at baseline had a poorer prognosis than those with hs-CRP levels ≤3.0 mg/l. A similar result was obtained also when we excluded study patients who already had MI at baseline.

When we excluded those patients with type 2 diabetes whose hs-CRP was >10 mg/l, the results were essentially similar to those in the whole cohort. For example, the relative risk for CHD mortality rate in those patients with type 2 diabetes whose hs-CRP was >3.0 mg/l but not >10 mg/l (n = 238) compared

| Table 2—Relative risks for death from CHD in type 2 diabetic patients with hs-CRP level >3.0 vs. ≤3.0 mg/l |
|---|--|-----------------|-----------------|
| Relative risk (95% CI) | P |
| All patients Unadjusted | 1.67 (1.22–2.30) | 0.002 |
| Adjusted for age and sex | 1.72 (1.25–2.37) | 0.001 |
| Adjusted for multiple factors* | 1.72 (1.23–2.41) | 0.002 |
| Patients without MI at baseline Unadjusted | 1.83 (1.24–2.72) | 0.003 |
| Adjusted for age and sex | 1.81 (1.22–2.69) | 0.003 |
| Adjusted for multiple factors* | 1.84 (1.21–2.80) | 0.004 |

*Adjusted for age, sex, duration of diabetes, total cholesterol level, HDL cholesterol level, triglyceride level, HbA1, presence of hypertension, smoking, BMI, and area of residence.
High-sensitivity CRP and CHD in type 2 diabetes

with those whose hs-CRP was ≤3.0 mg/l (n = 722) was 1.60 without adjustment and 1.68 after multiple adjustment (P = 0.007).

CONCLUSIONS — In our prospective study of a large cohort of patients with type 2 diabetes, we found that elevated hs-CRP level predicted CHD death independently of other cardiovascular risk factors. However, the risk was increased only at higher hs-CRP level (>3 mg/l).

Previous studies on the predictive value of hs-CRP in subjects with type 2 diabetic patients are scanty. In the Health Professionals Follow-up Study, high CRP level was associated with increased incidence of cardiovascular events in men, but the sample size was small and CHD events were few in number (8). The Hoorn study showed an association between CRP and cardiovascular mortality in patients with type 2 diabetes, but the association was not independent of other CHD risk factors (9). In patients with type 2 diabetes who had acute coronary syndrome, CRP seemed to be an independent predictor for cardiovascular death (10). In the Honolulu Heart Program, the association with elevated CRP and MI was weaker in diabetic than in nondiabetic men (16). It is possible that other CHD risk factors typical for patients with type 2 diabetes like high triglyceride level, low HDL cholesterol level, hypertension, and hyperglycemia per se partially mask the role of hs-CRP as a risk factor for CHD in this population. In nondiabetic subjects, increased level of hs-CRP seems to be a strong risk factor in apparently healthy individuals (3–5), but it also seems to predict future outcomes in patients with established CHD (17). In our study, we also found an independent association between CHD death and elevated hs-CRP in patients with type 2 diabetes without MI at baseline, suggesting that inflammation also plays an important role in this high-risk group before severe clinical outcomes of CHD have occurred. The association of elevated hs-CRP with CHD events was more clear in relation to fatal events than fatal and nonfatal events combined. This may imply that patients with high hs-CRP have had more severe atherosclerotic coronary disease with a poorer clinical outcome of MI than those with lower CRP levels.

There are many possible mechanisms by which hs-CRP enhances atherosclerotic.

Acknowledgments — This study was supported by the Turku University Central Hospital Research Fund and Juho Vainio Foundation.

References

13. World Health Organization: Proposal for the Multinational Monitoring of Trends and

