abietic) population, the incidence decreases from 3.38 to 2.68 (P = 0.013, X²). When data are expressed in terms of the total population, the benefit of changes in management may be obscured by the increasing prevalence of the disease.

Although the decrease in amputation incidence was only 20%, the actual incidence in 2004 was well within the range reported by other European centers. Since the magnitude of any such decrease is dependent on the baseline value, we suggest that rather than aim for a percentage reduction in incidence, future health care targets should specify an absolute value. Evidence from the published literature suggests that this should be of the order of 2 to 3 per 10³ of those with diabetes or even lower.

References

Table 1—Clinical characteristics of subjects

<table>
<thead>
<tr>
<th>Sex (female/male)</th>
<th>2-h plasma glucose (mmol/l) after OGTT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>NGT (n = 51)</td>
</tr>
<tr>
<td></td>
<td>gr. I (<5.6)</td>
</tr>
<tr>
<td>Sex (female/male)</td>
<td>5/10</td>
</tr>
<tr>
<td>Age (years)</td>
<td>32.2 ± 1.2</td>
</tr>
<tr>
<td>BMI (kg/m²)</td>
<td>21.7 ± 0.9</td>
</tr>
<tr>
<td>Waist circumference (cm)</td>
<td>74.9 ± 2.7</td>
</tr>
<tr>
<td>Glucose infusion rate (mg·kg⁻FFM⁻¹·min⁻¹)</td>
<td>9.31 ± 0.82</td>
</tr>
<tr>
<td>HOMA%B</td>
<td>127.9 ± 6.9</td>
</tr>
<tr>
<td>HOMA%B_adjusted</td>
<td>1150.9 ± 89.2</td>
</tr>
</tbody>
</table>

Data are means ± SE. HOMA%B_adjusted = HOMA%B X glucose infusion rate. *P < 0.05 compared with gr I, †P < 0.05 compared with gr II, ‡P < 0.05 compared with gr III. IGT, impaired glucose tolerance; OGTT, oral glucose tolerance test.
g A R C R T

DIABETES CARE, VOLUME 29, NUMBER 3, MARCH 2006

Mellitus?

Gestational Diabetes

for Managing

Monitoring Be A Tool

References

Could Blood Ketone Monitoring Be A Tool for Managing Gestational Diabetes Mellitus?

N utritional management of gestational diabetes mellitus (GDM) is based on guidelines from diabetology societies (1). Ketonuria is often monitored, but clear management guidelines have not been established. Home-based methods of measuring ketonemia are available. We believe that it is important to evaluate the utility of this tool in GDM.

We measured ketonemia in a control population of pregnant women and a GDM population. Pregnant women were systematically screened for GDM between the 24th and 28th weeks (75-g oral glucose tolerance test [OGTT], World Health Organization guidelines). A total of 56 women (29.98 ± 4.86 years of age, prepregnancy BMI 23.14 ± 4.62 kg/m², weight gain 14.49 ± 4.93 kg) with a normal OGTT and 49 women (31.35 ± 5.39 years, prepregnancy BMI 25.96 ± 5.91 kg/m², weight gain 9.25 ± 5.52 kg) with GDM were included.

Each subject was monitored in accordance with the appropriate guidelines; in addition, the control subjects performed glycemia and ketonemia self-monitoring three times a day (upon waking and before the midday and evening meals). GDM women were also asked to measure their postprandial glycemia. All subjects measured their fasting ketonuria.

Glycemia measurement was performed using test strips and a meter (Abbott), and capillary blood ketonemia measurement was performed using Optium β-Ketone test strips and the same meter (2). The replicate analysis resulted in CVs of 3.3%. The study protocol was approved by an ethics committee.

The two groups did not differ in terms of age, but BMI and weight gain were higher in the GDM than in the control group (P < 0.01). The mean ketonemia was lower in the control than in the GDM group (0.01 ± 0.10 vs. 0.04 ± 0.009 mmol/L, P < 0.001). Fasting ketonemia did not differ between the control and GDM groups (0.01 ± 0.11 vs. 0.01 ± 0.06 mmol/L, respectively). Ketonemia values measured before the midday and the evening meal were lower for control than for GDM patients (midday 0.01 ± 0.08 vs. 0.05 ± 0.11 mmol/L, P = 0.002; evening 0.02 ± 0.09 vs. 0.05 ± 0.10 mmol/L, P = 0.005).

A ketonemic episode was defined as the unbroken period during which each day is a part of a sliding 7-day interval containing >25% of height value. Of the control subjects, 6 (12%) experienced at least one ketonemic episode (average length 10.5 days) versus 23 (47%) in the GDM group (average length 13.8 days) (a total of 37 episodes).

For women with GDM, we are not currently in a position to conclude whether their ketonemia levels have clinical significance in terms of the pregnancy outcome or the health of the child. Ketonemia values differ from those recorded in control subjects, and this difference is not irrelevant. A study needs to be performed to be certain that higher ketonemia has a detrimental prognostic significance for fetal development.

Reports from the literature have focused exclusively on ketonuria. A negative correlation between ketonuria and intellectual quotient in children born to diabetic mothers has been reported (3,4). A relationship between high fasting ketonemia during the last trimester and delayed educational development has been suggested (5).

Could Blood Ketone Monitoring Be A Tool for Managing Gestational Diabetes Mellitus?

Address correspondence to Chatchalit Rat-tarasarn, MD, Division of Endocrinology and Metab-onism, Department of Medicine, Ramathibodi Hospital, Rama VI Road, Bangkok 10400, Thailand. E-mail: racrt@nucc.mahidol.ac.th.

© 2006 by the American Diabetes Association.

References

Blood Pressure Measurement in Diabetes Clinic

Are we paying enough attention?

The American Diabetes Association statement (1), “Care of Children and Adolescents With Type 1 Diabetes,” outlines recommendations for management of hypertension in children with type 1 diabetes. Hypertension in children can be missed if appropriate norms are not used, and, as the authors state, “clinicians who care for children with diabetes often pay little or no attention to blood pressure.” Here, we report results of a retrospective chart review of serial clinic