Intensive Insulin Therapy in Critical Care: A Review of a Dozen Protocols
Received for publication 20 September 2006 and accepted in revised form 2 January 2007

Mark Wilson, MD
Jane Weinreb, MD
Guy W. Soo Hoo, MD, MPH

1Endocrine and 2Pulmonary and Critical Care Sections
West Los Angeles Healthcare Center; VA Greater Los Angeles Healthcare System
Geffen School of Medicine at UCLA
Los Angeles, California

Correspondence to:
Guy W. Soo Hoo, MD, MPH
Pulmonary and Critical Care Section (111Q)
West Los Angeles Healthcare Center
11301 Wilshire Blvd
Los Angeles, CA 90073
Email: Guy.Soohoo@med.va.gov

None of the authors have any conflicts to disclose

Supported in part by: Diabetes Action Research and Education Foundation grant 182 (JW)

Running title: Intensive insulin in critical care
Abstract
Objective: To review performance characteristics of twelve insulin infusion protocols.
Research Design and Methods: We systematically identify and compare twelve protocols and then apply the protocols to generate insulin recommendations in the management of a patient with hyperglycemia. The main focus involves a comparison of insulin doses and patterns of insulin administration.
Results: There is great variability in protocols. Areas of variation include differences in initiation and titration of insulin, use of bolus dosing, requirements for calculation in adjustment of the insulin infusion, and method of insulin protocol adjustments. Insulin recommendations for a sample patient are calculated to highlight differences between protocols, including the patterns and ranges of insulin dose recommended (range from 27 to 115 units [mean ± SD = 66.7 ± 27.9 units]), amount recommended for glucose readings > 200 mg/dl, and adjustments nearing target glucose.
Conclusions: The lack of consensus in the delivery of intravenous insulin infusions is reflected in the wide variability of practice noted in this survey. This mandates close attention to the choice of a protocol. One protocol may not suffice for all patients.
Introduction:

Normalization of hyperglycemia in diabetes decreases morbidity and mortality (1,2). On the other hand, “stress hyperglycemia” of acute illness was considered an adaptive response to ensure an adequate fuel source for non-insulin dependent tissues (e.g. RBCs, CNS) (3). The association of hyperglycemia with poor outcomes has challenged this view (4-6). Control of hyperglycemia in surgical intensive care units (ICU) patients, those with acute coronary syndrome, and stroke improve outcomes (7-10). A mortality benefit to tight glycemic control in medical ICU (MICU) patients was suggested based on comparison with historical controls, but not substantiated in a prospective trial (11,12).

In 2004, the American Diabetes Association (ADA) and American Association of Clinical Endocrinologists (AACE) issued position statements for tight glycemic control of patients with critical illness in the surgical ICU (13,14). No specific recommendations were made for MICU patients, but the AACE felt, “It is reasonable… to assume that achievement of near-normal glycaemia is beneficial and desirable in all ICU patients with elevated glucose.” Their recommended goal blood glucose (BG) in critical illness was < 110 mg/dl (13). Others proposed a goal of 90-140 mg/dl (15). Both organizations have emphasized the importance of glucose control in their most recent consensus statement and outline crucial elements of a successful program including adequate administrative support, multidisciplinary involvement, assessment of current practices and standardized protocols. Crucial elements of the best protocols include adjustments for previous and current glucose levels, the rate of change in glucose, the insulin infusion rate and need for frequent glucose checks (16). Protocols in the ICU decrease variability of practice and improve outcomes (17). Insulin infusion protocols decrease the time to and permit maintenance of a target BG, and decrease hypoglycemia relative to sliding scale insulin and physician directed titration (18-20). Nevertheless, developing an insulin infusion protocol for the ICU has been challenging (19). A survey of published protocols is notable for their number and complexity (21). Intravenous insulin protocols have been designed for patients in both medical and surgical ICUs (20,22,23). Furnary and colleagues (24,25) describe a decade of experience, with changes for patient safety, to prevent hypoglycemia and facilitate nursing utilization. Over time, they have decreased their target BG from 150 – 200 mg/dl to 100-150 mg/dl to 80-120 mg/dl (26). The most striking aspect of these protocols is the variability in insulin delivery and the complexity of instructions. This may result in great differences in insulin dosing and can be confusing for those trying to implement an insulin protocol. Our initial experience with an insulin protocol was notable for excess hypoglycemia and suboptimal dose titration. This led to the following review of published insulin protocols and comparison of insulin recommendations in a hyperglycemic MICU patient.
Methods and Materials:
A search for intravenous insulin protocols was performed with the National Library of Medicine search engine, PUBMED, using the keywords “insulin protocol” and “intravenous insulin.” Protocols were limited to those designed for critically ill ICU patients. There is extensive experience with glucose-insulin-potassium infusions in myocardial infarction (27). These protocols were not included since they may not be applicable to other critically ill patients as free fatty acid reduction, not glucose control was the premise behind their use (28). Additional published protocols were identified in review of the publications’ references.

With a single exception, the protocols represent efficacy studies, or protocols in use with historical controls. A systematic comparison of the performance of insulin protocols is not possible due to the lack of prospective, randomized trials. Therefore, this review focuses on the approach to intensive insulin therapy and differences between protocols.

A total of twelve different protocols were identified (7,11,15,19,25,29-36). Full text review was conducted independently and a consensus achieved with respect to inclusion in the survey. For the purposes of discussion, the protocols are referred to by the first author and are listed in Table 1. Only the most recent published protocol was chosen in the case of similar protocols.

For example, the protocol published by Bode represents modifications of the protocols published by Markovitz and Trence (20,37). Similarly, the Ku protocol represents modifications from the Markovitz protocol (38). The Boord protocol is similar to protocols by Hirsch and Jacober (39,40). The Zimmerman protocol is similar to one by Brown (18). The Goldberg protocol provides more details of a protocol outlined by Metchick (23,41). The Furnary or Portland protocol is referenced by both its publication and online link (25,26). The published protocol was used for comparison. The Dilkush protocol is similar to the Portland protocol (42). The Van den Berghe protocol was not originally published, but subsequently available in supplementary materials (43). Protocols published by Herr, Levetan, and Laver (44-46) were not included because they were either lacking key details or too narrow in focus.

Some protocols have been incorporated into a computer program, accessed with a handheld computer or desktop. The Davidson protocol is one program and while primarily a computerized program, also with options for bedside calculations. This protocol is also available in a drip chart format not requiring calculations (47). Other computerized guidelines have been reported, but not included given their limited availability (48-50). One program by Thomas was based on the Van den Berghe protocol (49).

The protocols were reviewed with respect to target goals, autonomy, steps for initiation and titration of insulin, and methods of adjustment. The blood glucose records from a hyperglycemic patient treated with the Van den Berghe protocol at our institution were used to calculate insulin recommendations based on these protocols. The hourly BG values during treatment were compared with the other eleven protocols using a BG goal of 80 – 110 mg/dl. The major assumption was that the change in glucose would be the same for all of the protocols, allowing comparison of recommended insulin dosing. This methodology is similar that employed by Davidson and colleagues (36). The patient data reviewed was from a comparative insulin study approved by our IRB and the patient provided written informed consent for their participation.
RESULTS
COMPARISON OF INSULIN PROTOCOL RECOMMENDATIONS

The features of each protocol are presented in Table 1. There was variability in nearly every aspect of management. The following highlights the major differences between protocols.

Staff implementation

The majority of protocols are nursing implemented with limited physician oversight. Only two specified initial physician input (Bode, Van den Berghe) and a physician assists nursing staff with titration in the Van den Berghe protocol. All of the protocols, except the Furnary protocol, required administration of glucose while receiving intravenous insulin. The Van den Berghe protocol patients received 200-300 grams of intravenous glucose per day or 20-30 kcal/kg of enteral/parenteral feedings.

Bolus insulin (initial and subsequent)

An initial insulin bolus was used in four of the twelve protocols. The bolus amount was based on the initial BG value (Goldberg, Furnary, Zimmerman), whereas the Bode protocol left this to the discretion of the attending physician. Four protocols use subsequent bolus insulin to augment insulin titration (Chant, Furnary, Watts, Zimmerman).

Adjustments in infusion rate

Table 1 outlines the major differences. Four protocols require one step for adjustments in the insulin rate (Boord, Krinsley, Marks,Watts). Two step protocols include those by Chant, Furnary, Kanji, Van den Berghe and Zimmerman. The first three incorporate changes in the direction and amount of change in glucose to adjust the insulin rate. The Van den Berghe protocol does not require calculations to titrate insulin, but does reduce the infusion for large (> 50%) decreases in glucose. This protocol has been associated with frequent hypoglycemia, prompting one medical center to revise this protocol (19). This protocol allows and perhaps requires more physician oversight in adjusting the infusion, thereby precluding the need for more explicit step-by-step recommendations.

In six of the twelve protocols, the insulin infusion rate is adjusted based on the direction and/or the velocity (rate) of BG decline. This represents additional steps, and in some, calculations prior to rate adjustment. Most changes are based on the glucose range, but two (Goldberg and Zimmerman) factor the insulin infusion rate in making adjustments. Changes in the infusion rate are made either in terms of absolute units or a percentage of the current insulin drip rate.

The Bode, Davidson, and Goldberg protocols require the greatest number of steps. The Bode protocol requires calculation of the rate of BG change and duration in a given algorithm arm for each adjustment. The Davidson protocol uses a multiplier based on the BG level. The Goldberg protocol factors both the direction of change in BG and its velocity of change in adjustments. Eight of the twelve protocols require mathematical calculations of variable complexity.

Time to target glucose goals

The amount of time required to reach target glucose is reported for some of the protocols and outlined in Figure 1. Direct comparison is tempered by non-comparable patients, but target levels are reached within 8-12 hours and uniformly more rapidly than noted in previous experience with historical cohorts. Investigators also report lower mean morning serum glucose, lower proportion of hyperglycemic patients, slightly increased hypoglycemia and greater nursing workload in patients treated with intravenous insulin infusions.

Insulin recommendations

The insulin recommendations for a hyperglycemic patient are presented in Figure 1 and table 2. The patient required a significant amount of insulin before control
could be achieved. During the nine hours under evaluation, the patient actually received 98.5 units of insulin. Comparing the protocols, the amount of insulin recommended ranged from 26.9 units to 115 units with a mean of 66.7 ± 27.9 units. There is considerable variability in the adjustment of the insulin infusion. With the BG declining, seven of the twelve protocols have the insulin rate either increasing or staying virtually the same (≤ 1 unit/hour adjustment). Most protocols deliver the bulk (> 75%) of the total insulin dose when the BG ≥ 200 mg/dl. Four protocols administer ≥ 45% of total insulin when the BG is < 200 mg/dl.

The Van den Berghe protocol calls for limited dose adjustment as the patient approaches hypoglycemia. As the BG decreases from 83 to 61 mg/dl, the protocol called for a decrease from 15 to 14.5 units/hour. Not surprisingly, the patient became hypoglycemic (< 40 mg/dl). It should be noted that this represents actual experience with this protocol. While this protocol permits physician input in dosing adjustments, these are individualized adjustments and are not included in the written protocol.
DISCUSSION

Despite extensive experience with intravenous insulin infusions, there exists no uniformity in this arena. The lack of consensus is illustrated by the wide variability and different patterns of insulin administration noted in the above patient. This mandates close attention to the choice of a protocol. It is not clear that protocols developed and validated for post-operative patients are effective when applied to other critically ill patients. Critically ill medical patients may not respond in the same manner as post-operative patients because of fluctuations in circulating stress hormones, underlying diabetes and other co-morbidities. A single insulin protocol for an institution has merits with uniformity the main benefit, but may not be realistic.

Bode and colleagues outline several features of an ideal insulin protocol including the ability to adapt to an individual’s response to insulin and the ability to balance stability and responsiveness (15). Braithwaite and colleagues note the need for a standardized approach to the evaluation of these protocols, including patient based measures of efficacy and measures of algorithm performance (51). We acknowledge and expand on points to consider when evaluating the efficacy and safety of any intravenous insulin protocol.

The first and foremost issue involves the approach to insulin delivery and adjustments. How is insulin initiated and titrated, and does the infusion anticipate and compensate for possible hypoglycemia? One strategy involves bolus insulin. Bolus insulin decreases the time to reach normoglycemia by administering a larger proportion of insulin “up front” as opposed to simply increasing the infusion rate.

Another strategy incorporates adjustments for variations in individual insulin resistance (reflected partly by adjustments based on the direction and velocity of glucose decline). This permits insulin resistant patients to have doses titrated more aggressively than insulin sensitive patients. The Bode protocol best illustrates this as the infusion rate is based on the degree of insulin resistance calculated with an insulin sensitivity factor. Other protocols account for the insulin resistance by multiplying the infusion rate by a constant (for example, at 10 units per hour, a 30% increase will lead to a 3 unit increase). Adjusting the insulin based on an absolute rather than a relative change does not account for insulin resistance and is presumably less effective in lowering the blood glucose. The multiplier used in the Davidson protocol adjusts for differences in insulin sensitivity.

It is impossible to compare the performance of a protocol without actually incorporating it into patient use. Compiling the differences between protocols with respect to recommendations and adjustment in the infusion rate provides some basis for comparison as illustrated in Table 1. However, ease of use, applicability to patients, insulin dose and effectiveness of glucose control cannot be compared without its actual application in patients. A randomized trial comparing protocols in multiple patients is impractical. Applying multiple protocols to the same patient is likewise impractical. Therefore, the only comparison that can be made would be to compare the recommendations of these protocols with the response of a known patient.

The limitations to such a comparison are acknowledged since in real life, the glucose change would vary based on the insulin previously administered, changing subsequent glucose levels which influence infusion adjustments. On the other hand, this approach does illustrate the response of a protocol to observed glucose levels and provides insight into their performance. It incorporates the actual response of a patient so there is some basis for comparison between protocols. In this manner, it allows one to appreciate the different insulin infusion patterns for the same situation. The differences seen are striking.
Noteworthy differences can be seen in the adjustments in dosing in the patient as the blood glucose approaches target. Five protocols (Bode, Davidson, Goldberg, Krinsley and Zimmerman) decreased the insulin dose with declining BG readings. These five protocols delivered the bulk (almost 80%) of insulin with the glucose > 200 mg/dl. The other protocols either increased or maintained insulin infusions at a steady level as glucose declined, with four protocols giving close to 50% of the insulin with the glucose < 200 mg/dl. This may increase the risk of hypoglycemia.

Other issues must be considered when evaluating an insulin protocol. The optimal degree of glycemic control and impact of tight glycemic control in MICU patients remains undefined. Glucose control between 80-110 mg/dl is frequently cited because of the mortality benefit in post-operative surgical patients. Most of this data is from a single center, randomized trial (van den Berghe). Furnary and colleagues report near elimination of sternal wound infections and halving mortality with an intravenous insulin infusion. Krinsley also noted an almost 30% reduction in mortality in a mixed medical-surgical ICU. While suggestive, their conclusions are tempered given their comparison to historical controls.

The benefit in MICU patients is not as clear. Van den Berghe reported in a single center, prospective randomized trial, no significant reduction in mortality in an intent-to-treat analysis of 1200 patients. It should be noted that their protocol was the same utilized for their post-operative patients. The mortality benefit with intensive insulin therapy occurred in those requiring ≥ 3 days of ICU care, and mortality was higher in those with a shorter stay. There was a decrease in morbidity defined as new renal insufficiency, duration of weaning from mechanical ventilation, time to discharge from the ICU and hospital with intensive insulin therapy.

The risk of hypoglycemia must be factored into consideration of these protocols. The incidence of hypoglycemia (defined as a glucose ≤ 40 mg/dl) was in the 5% range in the Van den Bergh study of surgical patients, but increased to 18.7% in the study with MICU patients and 25% in those with > 3 days in the ICU> (7, 12). The odds ratio for hypoglycemia with intensive insulin therapy was 7.5 and would be higher with a threshold for hypoglycemia of 50 or even 60 mg/dl.

The upper threshold of optimal glucose control is undefined. A broader range of glucose and higher threshold may be just as efficacious, easier to attain and with a lower risk of hypoglycemia. Cross sectional data from Krinsley and Finney suggest the upper threshold with respect to mortality lies somewhere between initial values of 145 and 180 mg/dl (5,6). In another analysis, increased mortality at a glucose of > 150 mg/dl was noted, but not apparent until > 30 days had elapsed (52).

Intensive insulin therapy in MICU patients remains under study and has not received full endorsement (53). Two large, prospective randomized trials are in progress, one in Europe and the other in Australia, New Zealand and Canada (54,55). The GLUControl trial will enroll 3500 patients and the NICE-SUGAR (Normoglycemia in Intensive Care Evaluation and Survival using Glucose Algorithm Regulation) will enroll 4500 patients. Both studies will compare approximately the same ranges of glucose control (80-110 mg/dl vs. 140-180 mg/dl).

The last issue involves protocol adjustments permitted by a written protocol. Physician oversight appears essential in some protocols. If nursing implemented protocols are utilized, there needs to be some allowance for “off-protocol” adjustments. A calculation more complex than simple subtraction or division increases the possibility of errors. It is unclear if increasing the precision (and therefore complexity) of insulin dosing...
translates into improved patient outcomes. While calculations may require no more than a minute, frequent adjustments add up. The patient described underwent 20 BG determinations in the first 24 hours of intravenous insulin therapy. Even five minutes per glucose determination translates to one hundred minutes a day for insulin dosing. The experience and skill of nursing staff also contribute to a successful protocol. Concerns with calculations may be eased with nomograms or charts that require no calculation or automated computerized programs. Insulin adjustments are projected to require less than five minutes of nursing time, assuming a point-of-care glucose determination (23).

Recognition of the diversity of patients has led to the use of two separate insulin protocols (modified Furnary protocols) at our institution, one for the post-operative patient and other for mainly MICU patients. The main differences involve a tighter range of glucose control with more rapid titration for hyperglycemia in post-operative patients.

Summary

In summary, the ideal insulin infusion protocol should achieve glycemic control in a reasonable time frame, with minimal hypoglycemia, low operator error rate and require minimal nursing time. The selection of a protocol requires careful investigation and must take the type of patient into account. The best incorporate bolus doses, adjust for the direction and rate of glucose decline, and permit “off-protocol” adjustments. Comparison of protocol insulin recommendations may be useful, but selection may not be possible short of an actual trial with the protocol. While “one protocol fits all” is a common practice, the diversity of patients call for a re-examination of this approach.

ABBREVIATIONS

- AACE: American Association of Clinical Endocrinologists
- ADA: American Diabetic Association
- BG: Blood glucose
- ICU: Intensive care unit

Reference List

36. Davidson PC, Steed RD, Bode BW: Glucommander: a computer-directed intravenous insulin system shown to be safe, simple, and effective in 120,618 h of operation. *Diabetes Care* 28:2418-2423, 2005

Table 1. Comparison of Insulin Infusion Protocols

<table>
<thead>
<tr>
<th>Author</th>
<th>Target glucose (mg/dl)</th>
<th>Bolus insulin</th>
<th>Changes in insulin infusion based on changes in glucose</th>
<th>Basis of changes in insulin rate</th>
<th>Steps for insulin adjustment</th>
<th>Time to goal glucose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Initial</td>
<td>Add</td>
<td>Direction</td>
<td>Velocity</td>
<td>Resistance</td>
<td>R or I</td>
</tr>
<tr>
<td>Bode</td>
<td>100-150</td>
<td>Y *</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Boord</td>
<td>120-180</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>Chant</td>
<td>90-144</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>Davidson</td>
<td>< 180</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>Y</td>
</tr>
<tr>
<td>Furnary</td>
<td>100-150</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Goldberg</td>
<td>100-139</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>Kanji</td>
<td>80-110</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Krinsley</td>
<td>< 140</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>Marks</td>
<td>120-180</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>Van den Berghe</td>
<td>80-110</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>Watts</td>
<td>120-180</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>Zimmerman</td>
<td>101-150</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
</tbody>
</table>

See text for complete references

Abbreviations and additional details:
Protocols all nursing driven with physician input written only for protocols by Bode and Van den Berghe.
Bolus: Initial bolus = Y; Y* = variable dose based on physician input; Add = additional boluses based on glucose level
Changes in insulin infusion:
- Direction = reflect whether subsequent glucose levels are increasing or decreasing
- Velocity = reflects changes based on the rate (amount) of decline in glucose
- Resistance = adjustments based on patient’s resistance to insulin

Basis of insulin change: R = rate changed based on glucose range; I = rate change based on insulin infusion rate
- U = changes made in units of insulin; % = changes based on a percentage of the current insulin infusion rate
- Multiplier = adjustment of insulin dose using a multiplier incorporated into a formula for calculation

Insulin adjustment: include number of steps and if calculations are needed

Time to goal: Reported as median values, range or mean ± standard deviation. NR: Not reported
Table 2. Comparison of insulin recommendations

<table>
<thead>
<tr>
<th>Author</th>
<th>Bolus (Units)</th>
<th>Initial infusion Rate (Units/hour)</th>
<th>Insulin infused with BG > 200 mg/dl (Units)</th>
<th>Percentage of insulin infused with BG > 200 mg/dl (%)</th>
<th>Highest hourly dose (Units)</th>
<th>Total insulin dose (Units)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bode</td>
<td>0*</td>
<td>8</td>
<td>41</td>
<td>90 %</td>
<td>11</td>
<td>45</td>
</tr>
<tr>
<td>Boord</td>
<td>0</td>
<td>1</td>
<td>14.3</td>
<td>53 %</td>
<td>4.3</td>
<td>26.9</td>
</tr>
<tr>
<td>Chant</td>
<td>0</td>
<td>6</td>
<td>42</td>
<td>66%</td>
<td>15</td>
<td>63.5</td>
</tr>
<tr>
<td>Davidson</td>
<td>0</td>
<td>8</td>
<td>52.3</td>
<td>79 %</td>
<td>12.3</td>
<td>66.3</td>
</tr>
<tr>
<td>Furnary</td>
<td>12</td>
<td>6.5</td>
<td>59.5</td>
<td>76 %</td>
<td>18.5</td>
<td>78</td>
</tr>
<tr>
<td>Goldberg</td>
<td>4.5</td>
<td>4.5</td>
<td>26</td>
<td>81 %</td>
<td>9</td>
<td>32</td>
</tr>
<tr>
<td>Kanji</td>
<td>3</td>
<td>3</td>
<td>41</td>
<td>53%</td>
<td>12</td>
<td>77</td>
</tr>
<tr>
<td>Krinsley</td>
<td>0</td>
<td>10</td>
<td>40</td>
<td>91%</td>
<td>10</td>
<td>44</td>
</tr>
<tr>
<td>Marks</td>
<td>0</td>
<td>1</td>
<td>54</td>
<td>50%</td>
<td>18</td>
<td>107</td>
</tr>
<tr>
<td>Van den Berghe</td>
<td>0</td>
<td>4</td>
<td>40</td>
<td>41%</td>
<td>15</td>
<td>98.5</td>
</tr>
<tr>
<td>Watts</td>
<td>0</td>
<td>1.5</td>
<td>36.5</td>
<td>74%</td>
<td>10.5</td>
<td>49</td>
</tr>
<tr>
<td>Zimmerman</td>
<td>10</td>
<td>4</td>
<td>88</td>
<td>77%</td>
<td>21</td>
<td>115</td>
</tr>
</tbody>
</table>

See text for complete references

* Protocol permitted a bolus amount at the discretion of the attending physician. For the purposes of this simulation, no bolus was incorporated into analysis.
LEGENDS

Figure 1. Graphical summary of hourly insulin infusion rates using different insulin protocols to simulate treatment based on laboratory values from a hyperglycemic patient. See references for citations.
Figure 1 - Insulin infusion recommendations