Effects of Once-Weekly Dosing of a Long-Acting Release Formulation of Exenatide on Glucose Control and Body Weight in Subjects With Type 2 Diabetes

Received for publication 20 November 2006 and accepted in revised form 28 February 2007.

Dennis Kim1, MD, Leigh MacConell1, PhD, Dongliang Zhuang1, PhD, Prajakti A Kothare2, PhD, Michael Trautmann3, MD, Mark Fineman1, MS, Kristin Taylor1, PhD

1Amylin Pharmaceuticals, Inc., San Diego, CA
2Eli Lilly and Company, Indianapolis, IN
3Eli Lilly and Company, Hamburg, Germany

Corresponding author: Dennis Kim, MD
Amylin Pharmaceuticals, Inc.
9360 Towne Centre Drive, Suite 110
San Diego, CA 92121
Email: dkim@amylin.com

Running title: Exenatide LAR in subjects with type 2 diabetes

Registered Clinical Trial NCT00103935 at www.clinicaltrials.gov
Objective: In patients with type 2 diabetes, exenatide reduces HbA1c (A1C), postprandial and fasting glucose, and weight. This study investigated the effects of continuous exenatide administration from a long-acting release (LAR) formulation.

Research and Design Methods: In this randomized, placebo-controlled phase 2 study, exenatide LAR (0.8 or 2.0 mg) was administered subcutaneously once weekly for 15 weeks to subjects with type 2 diabetes (N=45) suboptimally controlled with metformin (60%) and/or diet and exercise (40%): 40% female, A1C 8.5±1.2%, fasting plasma glucose 9.9±2.3 mmol/L, weight 106±20 kg, diabetes duration 5±4 years, mean±SD.

Results: From baseline to Week 15, exenatide LAR reduced mean±SE A1C by -1.4±0.3% (0.8 mg) and -1.7±0.3% (2.0 mg), compared to +0.4±0.3% with placebo LAR (p <0.0001 for both). An A1C of ≤7% was achieved by 36% and 86% of subjects receiving 0.8 and 2.0 mg exenatide LAR, respectively, compared to 0% of subjects receiving placebo LAR. Fasting plasma glucose was reduced by -2.4±0.9 mmol/L (0.8 mg) and -2.2±0.5 mmol/L (2.0 mg), compared to +1.0±0.7 mmol/L with placebo LAR (p <0.001 for both). Exenatide LAR reduced self-monitored postprandial hyperglycemia. Subjects receiving 2.0 mg exenatide LAR had body weight reductions (-3.8±1.4 kg) (p <0.05), while body weight was unchanged with both placebo LAR and the 0.8 mg dose. Mild nausea was the most frequent adverse event. No subjects treated with exenatide LAR withdrew from the study.

Conclusions: Exenatide LAR offers the potential of 24-hour glycemic control and weight reduction with a novel once-weekly treatment for type 2 diabetes.
Introduction

In the United States, diabetes affects over 21 million people, with combined direct and indirect costs of $132 billion annually.1 Treatment of this chronic, progressive disease often requires daily blood glucose monitoring and multiagent treatment regimens. However, despite the many medications available, the majority of people with type 2 diabetes are unable to maintain long-term glycemic control.2 The high prevalence of obesity in this population compounds this problem, as obesity is a risk factor for developing type 2 diabetes and worsens hyperglycemia and insulin resistance.3,4 Furthermore, use of many antihyperglycemic medications is associated with weight gain.5

Incretin hormones, intestinally-derived hormones that stimulate glucose-dependent insulin secretion in response to food intake, play an important role in glucose homeostasis.6 Glucagon-like peptide-1 (GLP-1) is an incretin hormone with multiple glucoregulatory actions, including enhancement of glucose-dependent insulin secretion, suppression of inappropriately elevated glucagon secretion, slowing of gastric emptying, and reduction of food intake and body weight.6,7,8,9 Postprandial secretion of GLP-1 is reduced in patients with type 2 diabetes,10 suggesting that the GLP-1 signalling pathway is an attractive therapeutic target. However, GLP-1 is rapidly degraded by the enzyme dipeptidyl peptidase-IV (DPP-IV) and has a relatively short half-life (approximately 2 minutes).6 This has led to the development of a class of compounds called incretin mimetics that share several glucoregulatory actions with GLP-1 but are resistant to DPP-IV degradation.

Exenatide, with a half-life of 2.4 hours and clinical effects lasting up to 8 hours, is the first clinically-available incretin mimetic.10,11,12,13,14,15,16 When compared to GLP-1 in preclinical studies, exenatide has a 20- to 30-fold longer half-life and 5500-fold greater potency in lowering plasma glucose.7,17 In placebo-controlled clinical trials in patients not achieving adequate glycemic control with metformin, a sulfonylurea, or a combination of both, 30 weeks of 10 µg subcutaneous exenatide twice-daily (BID) resulted in statistically significant reductions in mean HbA\textsubscript{1c} (A1C), body weight, fasting plasma glucose, and postprandial plasma glucose excursions.18,19,20 Patients who continued in open-label extension studies for a total of 1½ years (82 weeks) of BID exenatide treatment had sustained A1C reductions and progressive body weight reductions.21 In open-label comparator trials with insulin glargine or 70/30 insulin aspart, exenatide treatment resulted in A1C reductions which were similar to insulin, but with better postprandial glucose control and body weight reduction instead of weight gain.22,23 Mild-to-moderate nausea, which decreased over time, was the most common adverse event associated with exenatide in all of these trials.

A long-acting release (LAR) exenatide formulation for subcutaneous injection in patients with type 2 diabetes is under development to determine whether superior glycemic control can be achieved when exenatide is continuously present, as compared to twice-daily exenatide, which may not provide complete coverage following midday meals and overnight. This report describes the effects of once-weekly subcutaneous administration of exenatide LAR for 15 weeks on glycemic
parameters, weight, pharmacokinetics.

Methods

Study Subjects

Subjects enrolled in this study were 18 to 75 years of age, had type 2 diabetes treated for at least 3 months prior to screening with diet modification with exercise (i.e. on no anti-diabetic agent) and/or metformin, A1C of 7.1% to 11.0%, fasting plasma glucose <14.4 mmol/L, and body mass index of 25 to 45 kg/m². All of the subjects treated with metformin (ranging from a total daily dose of 500 mg to 2550 mg) continued to receive the same dose throughout the study, with the exception of a subject in the 2.0 mg exenatide LAR arm who discontinued metformin and added insulin Lispro and insulin glargine to her regimen 6 weeks after the last dose of study medication. Another change in antidiabetic treatment occurred when, after 9 weeks of placebo LAR, a subject initiated treatment with glimepiride (this subject subsequently withdrew from the study due to loss of glucose control). Subjects who had previously received exenatide treatment in a clinical trial were excluded from the study. Additionally, no subjects were treated with exenatide during the trial A common clinical protocol was approved for each site by an Institutional Review Board. All subjects provided written informed consent prior to participation and the study was conducted in accordance with the principles described in the Declaration of Helsinki, including all amendments through the 1996 South Africa revision.

Study Design

In this multicenter subject- and investigator-blinded phase 2 study, subjects (N = 45) were equally randomized to placebo LAR, 0.8 or 2.0 mg exenatide LAR. Blinded, randomized study medication kits with unique package numbers were packaged separately and shipped to each clinical site. The study-site pharmacist contacted an interactive voice response system to randomly assign subjects to a treatment group and find out which medication kit to dispense to each subject. Doses were targeted to result in concentrations previously found to be therapeutic with exenatide BID. Subjects underwent a 3-day lead-in of 5 µg exenatide or placebo subcutaneous BID to determine whether any subjects randomized to exenatide LAR had an acute exenatide sensitivity. Then, once-weekly subcutaneous injections of 0.8 or 2.0 mg exenatide LAR or placebo LAR were administered at the study sites by study personnel for 15 weeks, with no changes in pre-existing antidiabetic regimens. Subjects were monitored for adverse events and pharmacokinetics during a subsequent 12-week follow-up period during which time no study medications were administered. Generally, visits were conducted at weekly intervals. Study recruitment began February 16, 2005, and follow-up continued through October 17, 2005.

For self-monitored blood glucose profiles, subjects were provided blood glucose meters and instructed to perform measurements by finger-stick at the fingertip. Preprandial glucose was measured 15 minutes before each meal, postprandial glucose 1.5 to 2 hours after each meal, and an additional glucose measurement was taken at 0300h. Measurements were recorded on three separate days for both baseline and Week 15.
Exenatide LAR consists of microspheres composed of exenatide and a poly(lactide-co-glycolide) (PLG) polymeric matrix. PLG is a common biodegradable medical polymer with an extensive history of human use in absorbable sutures and extended-release pharmaceuticals. Following injection, exenatide is slowly released from the microspheres through diffusion and erosion. Placebo LAR contained 0.5% ammonium sulfate instead of exenatide.

Endpoints

Objectives of this study were to evaluate the safety, tolerability, and pharmacokinetics of exenatide LAR. Additional objectives were to evaluate pharmacodynamic (i.e., glucose), A1C, and weight effects of exenatide LAR. Safety was assessed by adverse events, clinical laboratory values, physical examination, and electrocardiograms. Adverse events, as reported by the subjects or noted by study-site staff incidentally or as a result of nondirected questioning, were categorized as mild if transient, requiring no special treatment, and not interfering with daily activities, and as moderate if causing a low level of inconvenience, possibly interfering with daily activities, and ameliorated by simple therapeutic measures. An adverse event was categorized as severe if it interrupted a subject’s usual daily activities and required systemic drug therapy or other treatment.

Laboratory Values

Blood to measure plasma exenatide was drawn prior to study medication injection. Plasma exenatide concentrations were quantitated by a validated Enzyme-Linked Immunosorbent Assay (ELISA) at LINCO Diagnostic Services, Inc. (St. Charles, Missouri). A1C was quantitated by Quintiles Laboratories Ltd. (Smyrna, GA) using high-performance liquid chromatography. Anti-exenatide antibodies were measured in a similar fashion to that described previously at LINCO Diagnostic Services, Inc.

Statistical Analysis

A sample size of 36 subjects was estimated to provide 95% confidence intervals of approximately 65 to 115 pg/mL and 170 to 290 pg/mL for the mean exenatide concentrations at steady state for 0.8 and 2.0 mg exenatide LAR, respectively. The intent-to-treat (ITT) population comprised all randomized subjects who received at least one injection of lead-in medication (N=45), while the evaluable population consisted of subjects from the ITT population who completed the study procedures through Week 15 in compliance with the protocol (N=43). Descriptive statistics on demographics, safety, glycemic endpoints, and weight (i.e. mean values with either standard error or standard deviation, as appropriate) were provided for the ITT population. Descriptive statistics for self-monitored blood glucose measurements, which contained Week 15 measurements, were performed for the evaluable population. The proportion of subjects achieving A1C ≤7.0% also depended on Week 15 measurements. The A1C target analysis was performed on the subset of evaluable patients with baseline A1C >7% (N=41).

Plasma exenatide concentrations by treatment and time were provided for those subjects who received exenatide LAR and completed the study. Exenatide pharmacokinetics were analyzed by standard noncompartmental methods and summarized descriptively. Post-hoc
analyses were performed to compare the 0.8-mg and 2.0-mg exenatide LAR groups to the placebo LAR group with respect to the change from baseline for A1C, fasting plasma glucose, and body weight. Statistical significance was set at p<0.05.

Results

Subject Demographics and Disposition

Study subjects (N=45) were 40% female, and had the following mean (±SD) baseline characteristics: A1C 8.5±1.2%, fasting plasma glucose 9.9±2.3 mmol/L, weight 106±20 kg, diabetes duration 5±4 years. The different groups (Figure 1) varied in their sex, with more women in the placebo LAR group and more men in the exenatide LAR groups, and glycemia, with lower A1C and fasting plasma glucose in the 2.0-mg exenatide LAR group. Most subjects in this study were receiving metformin (N = 27), while the remaining 18 subjects were treated with diet modification and exercise. Two subjects withdrew from the study, both from the placebo LAR group. One subject withdrew during the lead-in period due to an adverse event, and one subject withdrew during the treatment period due to loss of glucose control (Figure 1).

Pharmacokinetics

With once-weekly exenatide LAR injections, mean plasma exenatide concentrations rose steadily. By Week 2, treatment with 2.0 mg exenatide LAR reached 50 pg/mL, a concentration previously shown to significantly reduce plasma glucose (Figure 2).28 After approximately 6 weeks of treatment with 2.0 mg exenatide LAR, plasma exenatide concentrations were maintained at concentrations similar to the maximum concentration achieved with a single injection of 10 µg exenatide [steady-state concentration with 2.0 mg exenatide LAR: 232 pg/mL, as compared to 211 pg/mL after a single injection of 10 µg exenatide].16 The steady-state concentration with 0.8 mg exenatide LAR was 111 pg/mL. After completion of the treatment phase at Week 15, exenatide concentrations decreased steadily, to below those considered to have a therapeutic effect by Week 21.

Glycemic Endpoints

Fasting plasma glucose was reduced rapidly, with significant mean±SE changes from baseline to Week 15 of -2.4±0.9 mmol/L and -2.2±0.5 mmol/L for the 0.8- and 2.0-mg exenatide LAR groups, respectively, compared to +1.0±0.7 mmol/L for the placebo LAR group (P<0.001 for both 0.8 mg and 2.0 mg vs. placebo LAR) (Figure 3A).

All 3 groups had similar self-monitored blood glucose profiles and mean average daily blood glucose concentrations at baseline (placebo LAR: 11.3 mmol/L, 0.8 mg: 11.4 mmol/L, 2.0 mg: 10.8 mmol/L) (Figure 3B). By Week 15, the mean average daily blood glucose concentration decreased for both LAR treatment groups (Week 15 values: 9.2 mmol/L [0.8 mg], 8.3 mmol/L [2.0 mg]) and rose for the placebo LAR group (12.2 mmol/L). Preprandial and postprandial plasma glucose concentrations decreased for both exenatide LAR groups, with the magnitude of postprandial excursions decreased by as much as 4-fold with 2.0 mg exenatide LAR, as compared to placebo LAR.

A1C was reduced at the first post-exenatide LAR measurement (Week 3) for both exenatide LAR groups and
progressively decreased throughout the treatment period (Figure 3C). At Week 15, significant mean±SE A1C changes from baseline of -1.4±0.3% and -1.7±0.3% were observed for the 0.8- and 2.0-mg exenatide LAR groups, respectively, compared to +0.4±0.3% for the placebo LAR group (P<0.0001 for both 0.8 mg and 2.0 mg vs. placebo LAR), resulting in mean A1C values of 7.2% and 6.6% in the 0.8- and 2.0-mg exenatide LAR groups, respectively, compared to 9.0% for the placebo LAR group. Of evaluable subjects with baseline A1C >7% (N = 41), 86% in the 2.0-mg group and 36% of subjects in the 0.8-mg group achieved an A1C of ≤7% at Week 15, compared to 0% of subjects in the placebo LAR group.

Weight

Body weight decreased progressively in the 2.0-mg exenatide LAR group, with a significant mean±SE change from baseline at Week 15 of -3.8±1.4 kg (3.5% of total baseline body weight) (Figure 3D) (P<0.05 2.0 mg exenatide LAR vs. placebo LAR). Body weight was unchanged for the 0.8-mg exenatide LAR and placebo LAR groups.

Safety and Tolerability

All adverse events were mild to moderate in intensity, except for one severe adverse event of urticaria and pruritus which was considered related to shellfish ingestion, not exenatide treatment. Nausea was the most frequently reported adverse event among exenatide LAR-treated subjects (exenatide LAR: 0.8 mg 19%, 2.0 mg 27% vs. placebo LAR: 15%), followed by gastroenteritis (exenatide LAR: 0.8 mg 19%, 2.0 mg 13% vs. placebo LAR: 0%), and hypoglycemia (exenatide LAR: 0.8 mg 25%, 2.0 mg 0% vs. placebo LAR: 0%). All episodes of nausea were mild, with no reports of vomiting. Hypoglycemic episodes, only one of which was confirmed with a blood glucose concentration (3.1 mmol/L), were mild in intensity and were not related to the dose of exenatide LAR (as all occurred in the 0.8-mg group). Injection site bruising occurred more frequently in exenatide LAR-treated patients (exenatide LAR: 0.8 mg 13%, 2.0 mg 7% vs. placebo LAR: 0%).

There were no withdrawals due to adverse events during exenatide LAR treatment. There were no clinically significant abnormal hematologic, chemistry, or urinalysis values reported during the study. Further, there were no clinically significant abnormalities in vital signs and ECG interpretations.

At Week 15, 67% of subjects in the exenatide LAR treatment groups were positive for anti-exenatide antibodies. Individual subject profiles did not reveal a clear association between antibody response and effects on safety or efficacy.

Discussion

Development of an exenatide formulation with once-weekly dosing that reduces A1C and weight could provide patients and clinicians with a novel tool with which to treat type 2 diabetes. In this study, once-weekly exenatide LAR for 15 weeks had multiple metabolic effects, including significant reduction of A1C, weight, and fasting glucose, and marked reduction of self-monitored postprandial glucose. Treatment with 2.0 mg exenatide LAR, but not 0.8 mg, reduced body weight, indicating that higher exenatide concentrations are required for effects on weight. This dose-dependence in weight effects is in keeping with the observed
results of 30-week placebo-controlled studies of exenatide on a background of metformin or sulfonylurea treatment.18,19 Likewise, the magnitude of postprandial glucose excursions decreased as much as 4-fold with 2.0 mg exenatide LAR (compared to placebo LAR), which may account for the greater magnitude of A1C reduction with the 2.0-mg dose.

A single dose of the BID formulation of exenatide has a half-life of 2.4 hours after subcutaneous injection, predominantly due to renal clearance, and is administered before the 2 main meals of the day, 6 or more hours apart.16 Improvements in postprandial glycemia with exenatide BID have been most pronounced at breakfast and dinner, the meals before which exenatide is typically dosed, with some residual beneficial effects after lunch and during fasting. In contrast, treatment with exenatide LAR provides 24-hour exposure to therapeutic exenatide concentrations. This may account for the reduction in fasting glucose observed with 15 weeks of exenatide LAR being 4-fold greater than that reported in 30-week studies with 10 \(\mu\)g exenatide BID.18,19,20 In addition, exenatide LAR provides postprandial glycemic control with all meals. This combination of daylong fasting and postprandial effects may explain why the A1C reduction was approximately twice as large with 2.0 mg exenatide LAR, as compared to exenatide BID, and why the majority of subjects (86%) achieved target A1C of 7% or less. Similarly, it is possible that the 2-fold greater weight reduction could reflect possible effects on food intake throughout the day with 2.0 mg exenatide LAR, as opposed to presumably only at breakfast and dinner with exenatide BID.

Continuous GLP-1 infusion improves glycemic control, weight, insulin sensitivity, and \(\beta\)-cell function.8,29 However, while GLP-1, with a half-life of less than 2 minutes,6 is administered as a continuous infusion, exenatide LAR, with a median half-life of 2 weeks,30 can be administered as a once-weekly subcutaneous injection. Exenatide acts in a glucose-dependent manner, affecting insulin and glucagon secretion during hyperglycemia, but not euglycemia or hypoglycemia. Therefore, continuous exenatide concentrations can potentially improve glycemic control and other metabolic measures without increasing the risk of clinically significant hypoglycemia.

Exenatide LAR was well-tolerated, with almost exclusively mild-to-moderate adverse events. The relatively mild nausea profile with exenatide LAR compared to that observed with exenatide BID18,19,20 may be due to the more gradual increase in plasma exenatide concentrations upon initiation of treatment. In support of this hypothesis, stepwise introduction of exenatide has been shown to reduce the incidence of nausea by approximately half.31 The formation of anti-exenatide antibodies with exenatide LAR treatment was not predictive of endpoint response or adverse safety outcome, consistent with exenatide BID studies.18,19,20 Longer-term studies are needed to examine the safety profile of exenatide LAR. Thus far, exenatide BID has been on the market for over a year and a half and has been studied in clinical trials of up to 2 years duration32 without significant changes to its safety profile.

While these findings are encouraging, the relatively modest size (45 subjects), short duration (15 weeks), and administration of exenatide LAR by study staff must all be considered when interpreting these findings. The reductions in A1C and
weight did not appear to plateau by Week 15, so the full potential for and sustainability of glycemic improvement and weight reduction were not determined by this study. Additionally, the administration of injections by study staff at study sites ensured high compliance and uniform injection technique, which may not reflect real-world clinical use.

In this early study, the data suggest that a convenient, once-weekly exenatide formulation shows promise in the treatment of type 2 diabetes. The combined potential benefits of improved glycemic control and reduced weight in a novel once-weekly treatment regimen for patients with type 2 diabetes merits longer-term large-scale studies to gain further insight into exenatide LAR.

Acknowledgments

The authors thank the exenatide LAR clinical team for their assistance in the conduct, reporting, and quality control of the studies, and development of the manuscript; the investigators Andrew Ahmann, Bruce Berwald, Eric Klein, Sam D. Miller, John Pullman, and Richard Weinstein, and the study site staffs for conducting the study; the study subjects for their participation and Susanna Mac for writing of the manuscript. We thank Alkermes, Inc. for leading the development of and for manufacturing the long-acting release formulation of exenatide. Supported by Amylin Pharmaceuticals, Inc., San Diego, CA, Eli Lilly and Company, Indianapolis, IN, and Alkermes, Inc., Cambridge, MA.
References

Figures

Figure 1. Study flowchart. Disposition of patients throughout the study, with baseline demographics. Demographic data are mean±SD, except for sex, race, and diabetes treatment. Percentages may not add up to 100 due to rounding.
Figure 2. Plasma exenatide concentrations (mean+SD) over time in subjects receiving exenatide LAR (N = 31). Note that the last injection was administered at Week 14.
Figure 3. Glycemic and weight parameters. Unless otherwise indicated, white circle = placebo LAR, $N = 14$, black square = 0.8 mg exenatide LAR, $N = 16$, black circle = 2.0 mg exenatide LAR, $N = 15$. For A, C, and D * indicates statistically significant results ($p < 0.05$ compared to placebo LAR). (A) Fasting plasma glucose concentrations over time (ITT, $N = 45$; mean±SE). (B) Self-monitored blood glucose concentration profiles at baseline and Week 15 (evaluable, $N = 43$; mean±SE). White circle = placebo LAR, $N = 12$, black square = 0.8 mg exenatide LAR, $N = 16$, black circle = 2.0 mg exenatide LAR, $N = 15$. (C) A1C (%) over time (ITT, $N = 45$; mean±SE). (D) Change in body weight from baseline over time (ITT, $N = 45$; mean±SE).