Corneal Sensitivity is Reduced and Relates To the Severity of Neuropathy in Patients with Diabetes.

Received for publication 29 January 2007 and accepted in revised form 14 March 2007.

Mitra Tavakoli, MSc.1, Panagiotis A Kallinikos, PHD1, Nathan Efron, PHD2, Andrew JM Boulton, MD, FRCP1, Rayaz A Malik, PHD, MRCP1

Division of Cardiovascular Medicine, University of Manchester and Manchester Royal Infirmary, Manchester, UK1
Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia2.

Address of correspondence and reprint requests to
Dr. R.A.Malik,
Division of Cardiovascular Medicine,
University of Manchester,
Manchester, M13 9NT, UK.
E Mail- rayaz.a.malik@man.ac.uk
The focus in relation to the consequences of nerve damage in diabetes has been with the loss of sensation in the feet predisposing to the development of foot ulceration and lower extremity amputation (1). However, the cornea is 300-600 times more sensitive than skin (2). In addition to serving a protective function, corneal nerves regulate corneal epithelial integrity, proliferation and wound healing (3). In diabetic patients corneal sensitivity is reduced (4), due to a loss of corneal nerve fibers (5) which leads to corneal keratopathy (6, 7) and a susceptibility to injury with recurrent erosions and ulcers (8). Thus these changes are analogous to the diabetic foot, but because the cornea is not exposed to high pressures, ulceration occurs infrequently. Corneal sensation is mediated via myelinated Aβ and c-nerve fibers (9, 10) which can be evaluated using the Cochet-Bonnet aesthesiometer (C-BA) (2) or the Non Contact Corneal Aesthesiometer (NCCA) (11), respectively. In diabetic patients C-BA has been used to show a reduction in corneal sensitivity in some (12) but not other (13) studies. Furthermore, loss of corneal sensation has been related to the severity of retinopathy (12) and neuropathy (14).

We have assessed corneal sensitivity in a large group of diabetic patients using both C-BA and NCCA to assess concordance between the two methods and also to define whether c-nerve fibers are the earliest to undergo damage (15). Using corneal confocal microscopy we have previously shown that corneal nerve fibre damage is directly related to the severity of somatic neuropathy (16, 17). Thus detecting loss of corneal sensation may well be a logical screening tool for neuropathy and hence we have assessed the relationship between loss of corneal sensitivity and the severity of diabetic neuropathy.

RESEARCH DESIGN AND METHODS

After local research ethics committee (Greater Manchester Health Authority) approval and written informed consent, 147 diabetic patients and 18 age matched control subjects underwent assessment of the neuropathy deficit score (NDS) (18,19) and were stratified into: no neuropathy (NDS = 0-2); mild neuropathy (NDS = 3-5), moderate neuropathy (NDS = 6-8) and severe neuropathy (NDS = 9-10). A Cochet-Bonnet aesthesiometer model II (Luneau Ophthalmologie, Chartres, France) was used to measure the corneal touch threshold 2mm superior to the 6 o’clock limbal position to avoid a reflex blink (20). The filament length was decreased in steps of 0.5 cm until the subject felt the stimulus which was repeated four to six times. The corneal sensation threshold corresponds to the filament length (mm) giving a positive response to 50% of the presentations (21). The Non-Contact Corneal Aesthesiometer (Glasgow, Caledonian University, UK, 1996) uses a puff of air on the centre of the cornea, lasting 0.9 seconds to exert a force expressed in millibars (mbars) which quantifies corneal sensitivity using established methodology (4, 11, 21). Data are presented as Mean ± SD and analysed using one-way analysis of variance (ANOVA) and Scheffe Post-hoc test to study differences between groups and the Pearson test for correlation between variables.

RESULTS

147 diabetic patients with no, mild, moderate and severe neuropathy were compared to 18 control subjects (Table 1). Age, type of diabetes and HbA1c did not differ significantly between groups and diabetes duration increased with
neuropathic severity ($r = 0.40$, $P<0.0001$). Corneal sensitivity assessed using CB-A was significantly reduced in diabetic patients compared to control subjects (31.4 ± 19.4 v 52.3 ± 9.7; $P<0.0001$). It was not reduced in diabetic patients without neuropathy ($P=0.32$) but demonstrated a significant reduction in mild ($P=0.01$) moderate ($P<0.0001$) and severe ($P<0.0001$) neuropathy (Table 1). Corneal sensitivity assessed using NCCA was significantly reduced in diabetic patients compared to control subjects (1.4 ± 0.9 v 0.7 ± 0.1; $P<0.0001$). It was not significantly reduced in patients without ($P=0.31$) or with mild ($P=0.13$) neuropathy but was significantly reduced in those with moderate ($P<0.0001$) and severe ($P=0.02$) neuropathy (Table 1). C-BA correlated significantly with NCCA ($r = -0.42$, $P<0.0001$). Age correlated with C-BA ($r=-0.22$, $P=0.018$), but not NCCA ($r=0.13$, $P=0.14$). Duration of diabetes correlated with NCCA ($r=0.28$, $P=0.002$), C-BA ($r=-0.30$, $P=0.001$) and NDS ($r=0.40$, $P<0.0001$). There was a significant correlation between neuropathic severity assessed using NDS with NCCA ($r=0.35$, $P<0.0001$) and C-BA ($r=-0.62$, $P<0.0001$).

CONCLUSIONS

Diabetic patients may develop epithelial defects and corneal erosions (4, 5, 15, 16, 17, 22, 23) secondary to loss of corneal sensitivity (4, 5, 23, 24). Increasing age and duration of diabetes may lead to loss of corneal sensation (25). We have shown that increasing age is related to loss of corneal sensation, confirming some (4, 25) but not other (26) studies. We also demonstrate a significant association between the duration of diabetes and loss of corneal sensitivity using both NCCA and C-BA, which is in contrast with a previous study using NCCA (4). C-BA demonstrated considerable variability in corneal sensitivity, consistent with quantitative sensory testing in general (27). We also demonstrate a correlation between C-BA and NCCA which has not been reported in previous studies (4, 21). Although the development and progression of retinopathy, nephropathy and neuropathy are closely associated (28), loss of corneal sensitivity has been related to the severity of retinopathy in one (12) but not other studies (14, 24). In the present study we did not quantify retinopathy or nephropathy and therefore could not assess for any association with loss of corneal sensitivity. However one would expect loss of corneal sensation to be most strongly associated with neuropathy. Indeed, we (15-17) and others (5, 14) have previously demonstrated that corneal nerve fibre abnormalities are related to the severity of neuropathy. Accordingly, we show that corneal sensation is reduced in diabetic patients and progresses with the severity of neuropathy, suggesting that corneal nerve fibre damage accompanies somatic nerve fibre damage. In conclusion, loss of corneal sensation is easily quantifiable, occurs in diabetic patients with mild to moderate somatic neuropathy and progresses with the severity of neuropathy. These findings have important clinical implications regarding the development of corneal abnormalities in diabetic patients and also raise the possibility that corneal sensation could be used to screen for diabetic neuropathy.

Acknowledgments-This work was supported by the National Institute of Health Grant (R01 NS46259-01) and Juvenile Diabetes Research Foundation International (5-2002-185).
References:

23. McNamara NA, Brand RJ, Polse KA, Bourne WM. Corneal function during normal and high serum glucose levels in diabetes. IOVS 39: 3-17, 1998

<table>
<thead>
<tr>
<th>Group (Number)</th>
<th>Age (yrs)</th>
<th>Type I/II</th>
<th>Diabetes duration (yrs)</th>
<th>HbA1c (%)</th>
<th>NDS (0-10)</th>
<th>C-BA (mm)</th>
<th>NCCA (mbar)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control Subjects (n=18)</td>
<td>56 ± 17</td>
<td>-</td>
<td>0</td>
<td><6.5</td>
<td>0</td>
<td>52.28 ± 9.74</td>
<td>0.73 ± 0.14</td>
</tr>
<tr>
<td>No neuropathy (n=51)</td>
<td>56 ± 11</td>
<td>5/46</td>
<td>11 ± 10</td>
<td>8.1 ± 1.5</td>
<td>1.3 ± 0.9</td>
<td>41.49 ± 17.16</td>
<td>± 1.15 ± 0.43</td>
</tr>
<tr>
<td>Mild neuropathy (n=49)</td>
<td>58 ± 12</td>
<td>14/35</td>
<td>16 ± 12</td>
<td>7.9 ± 1.33</td>
<td>3.9 ± 0.7</td>
<td>34.09 ± 16.32</td>
<td>± 1.29 ± 0.61</td>
</tr>
<tr>
<td>Moderate neuropathy (n=27)</td>
<td>61 ± 10</td>
<td>6/21</td>
<td>19 ± 10</td>
<td>8.4 ± 1.45</td>
<td>7.1 ± 0.9</td>
<td>16.06 ± 14.61</td>
<td>± 1.68 ± 0.75**</td>
</tr>
<tr>
<td>Severe neuropathy (n=20)</td>
<td>60 ± 9</td>
<td>3/17</td>
<td>19 ± 12</td>
<td>8.3 ± 1.32</td>
<td>9.8 ± 0.4</td>
<td>11.36 ± 11.42*</td>
<td>± 2.35 ± 1.76†</td>
</tr>
</tbody>
</table>

Table 1. Clinical details and corneal sensitivity using Cochet-Bonnet aesthesiometry (C-BA) and non contact corneal aesthesiometry (NCCA) expressed as mean ± standard deviation in control subjects and diabetic patients with increasing neuropathic severity in accordance with neuropathy deficit score (NDS) with statistical difference compared to control subjects (P=0.01†, P=0.02‡, P<0.0001*, P<0.00001**).