Visfatin response to glucose is reduced in women with gestational diabetes mellitus

Received for publication 4 January 2007 and accepted in revised form 22 March 2007.

Dominik G Haider, MD1,2, Ammon Handisurya, MD2, Angela Storka1, Elena Vojtassakova1, Anton Luger, MD2, Giovanni Pacini3, Andrea Tura3, Michael Wolzt, MD1,2, Alexandra Kautzky-Willer, MD2

\begin{itemize}
\item 1 Department of Clinical Pharmacology,
\item 2 Department of Medicine III, Division of Endocrinology and Metabolism, Medical University of Vienna.
\item 3 Metabolic Unit, Institute of Biomedical Engineering (ISIB-CNR), Padova, Italy
\end{itemize}

Correspondence to:
Michael Wolzt, MD
Department of Clinical Pharmacology
Medical University of Vienna
Allgemeines Krankenhaus Wien
Währinger Gürtel 18-20
A-1090 Vienna, Austria
E-mail: michael.wolzt@meduniwien.ac.at
The insulin-mimetic adipocytokine visfatin has been associated with insulin resistance in some studies and is regulated by glucose. We hypothesized that glucose-induced changes in plasma visfatin are different in women with gestational diabetes mellitus (GDM). Plasma visfatin concentrations were studied in 10 women with GDM and 10 age-matched healthy women in pregnancy week 24-28 during a standard oral glucose tolerance test (OGTT). Women with GDM had lower systemic visfatin concentrations than controls (1.9±0.8 ng/ml vs 5.2±4.4 ng/ml, respectively, p<0.05), which were associated with fasting glucose (p<0.05). The glucose-induced increase in visfatin over baseline was smaller in GDM, with an area under the curve of 409±106 ng/ml*min versus 780±345 ng/ml*min in controls (p<0.05). Reduced glucose-induced increases in circulating visfatin may be associated with impaired glucose tolerance in women with GDM.
Introduction

Women with gestational diabetes mellitus (GDM) are at increased risk for developing type 2 diabetes. However, the pathophysiology is still poorly understood, nonetheless a variety of abnormalities that are also found in patients with type 2 diabetes are seen early in women in GDM (1). Among the factors that might contribute to altered glucose handling are changes in adipocytokines. For example, plasma adiponectin concentrations are lowered (2) and leptin and resistin persistently increased after delivery in women with GDM, and are associated with hyperglycemia and insulin resistance (3, 4).

The adipocytokine visfatin has been reported to mimic actions of insulin by activating the insulin signal transduction pathway through binding to the same receptor (5). Systemic visfatin concentrations are acutely regulated by glucose and insulin (6) and elevated in patients with insulin resistance, obesity, diabetes mellitus, and by rosiglitazone treatment (7-11).

In an effort to address the question whether plasma visfatin regulation is altered in women with GDM we have studied its concentration in pregnancy week 24-28 and compared with that of matched healthy pregnant women during a standard oral glucose tolerance test (OGTT).

Patients and Methods

Subjects. Ten women with GDM (age 33±2 years) diagnosed during pregnancy week 24-28 were invited to participate in the study. GDM was defined as two or more of the following criteria: fasting morning plasma glucose after a minimum of 3 days of unrestricted diet and unlimited physical activity of ≥5.3 mmol/l, 1 hour postload 75 g glucose of ≥10.0 mmol/l, or 2 hours postload glucose of ≥8.6 mmol/l. As controls, age-matched (34±1 years) pregnant women with normal OGTT were included.

Inclusion criteria were signed informed consent, absence of a clinically relevant illness, normal findings in the medical history and physical examination except for GDM, and normal laboratory values. Subjects were excluded if any clinically relevant abnormality was found as part of the screening or in any of the laboratory tests including circulating anti-insulin antibodies and anti-islet cell antibodies. No subject was on a special diet or reported intake of any medication, including “over-the-counter” drugs, at the time of blood sampling.

Study protocol. Venous blood samples for measurement of lipid status, glucose, insulin and visfatin concentrations were taken 1 h before a standard 75 g OGTT was carried out after overnight fasting. Venous blood sampling was repeated 30 min, 60 min, and 120 min after oral glucose load. Insulin sensitivity during an OGTT was assessed by the oral glucose insulin sensitivity index (OGIS), which describes glucose clearance (12). Standard laboratory parameters were quantified according to certified routine methods at the Clinical Institute for Medical and Chemical Laboratory Diagnostics, Allgemeines Krankenhaus Wien.

Measurement of visfatin. Plasma samples were stored at −70°C until analysis. Visfatin was analyzed using a commercially available ELISA kit (Phoenix Peptides, Karlsruhe, Germany), with an interassay and intraassay coefficient of variation of less than 6%.

Statistical analysis. All data sets were tested for normal distribution using the Kolmogorov-Smirnov test. Changes over baseline were assessed from the areas under the concentration versus time curves (AUC). Differences between groups were compared using the Mann-Whitney U test. Effects of OGTT were assessed by repeated measures ANOVA . All calculations were performed using the Statistica software package (release 4.5; StatSoft, Tulsa, OK). *P* < 0.05 was considered significant. Data are
expressed as means±SD unless indicated otherwise.

Results

Groups of pregnant women were comparable regarding age, body mass index, anthropometric and metabolic parameters except for higher fasting plasma glucose concentrations (5.4±0.6 versus 4.2±0.7 mmol/l, p<0.05) and lower OGTT values (376.5±21.1 versus 493.4±37.1 ml/min per m²; p<0.05) in women with GDM. Fasting plasma visfatin concentrations were lower in women with GDM (Fig. 1) and increased between 1.6-1.8 ng/ml and 1.2-3.9 ng/ml in women with GDM and controls, respectively.

The glucose-induced change in visfatin over baseline as calculated by AUC was 409±106 ng/ml*min in GDM and 780±345 ng/ml*min in controls (p<0.05 between groups, Mann Whitney U test). A significant correlation was detectable between fasting glucose and visfatin concentrations in both groups (r=0.46, p<0.05 in GDM and r=0.45, p<0.05 in controls), but not among other parameters.

Discussion

This study demonstrates that a glucose-induced visfatin increase is blunted in women with GDM, who have also lower fasting plasma concentrations compared with age-matched pregnant women. This finding extends previous studies from different populations with GDM, where increased (13) or decreased (14) circulating visfatin concentrations have been reported. The discrepancy of these finding is unclear, but may be related to differences regarding sampling time during pregnancy. The present data nevertheless confirm the regulatory role of glucose on circulating visfatin levels, which is consistent with results obtained during hyperglycaemic clamp studies in healthy young men (6). The cause of reduced fasting visfatin and mitigated response to glucose challenge in women with GDM is not directly accessible from this study. It has been demonstrated that plasma visfatin concentrations are inversely correlated to progressive beta-cell deterioration in patients with type 1 or type 2 diabetes (15). The present data argue against an assumption that altered pancreatic insulin secretion has contributed to reduced plasma visfatin in GDM, since insulin plasma concentrations were comparable in fasting conditions. This is important as insulin is known to suppress glucose-induced visfatin release in vitro and in vivo (6). Further, glucose-induced insulin release was similar in women with GDM as in healthy controls 60 min after oral glucose load.

On the contrary, as it is known that glucose induces visfatin release, which is also a consistent finding in this study, one might have expected higher visfatin concentrations in women with GDM. Thus, other factors than glucose and insulin alone seem to influence the regulation of visfatin in pregnancy, such as pro-inflammatory cytokines (2). Indeed, an association between plasma tumor necrosis factor-alpha and visfatin mRNA in subcutaneous adipose tissue has recently been reported (16). It is unclear if differences in fasting or glucose-stimulated plasma visfatin can be regarded as compensatory mechanism to maintain glucose homeostasis in GDM.

In summary, gestational diabetes is associated with lower visfatin concentrations than in healthy women during pregnancy. Visfatin is transiently increased after an oral glucose load, but this response is mitigated in GDM.

Acknowledgements:
We thank Veronika Ponzauner, RN, for assistance with sampling and logistics.
References

Figure 1

Plasma concentrations of visfatin (a), glucose (b) and insulin (c) during OGTT in women with GDM (open circles) and age-matched healthy pregnant controls (solid squares). Values are given as mean±SEM. *p<0.05 vs baseline (repeated measures ANOVA)
Insulin (µU/l) vs. minutes after glucose load
Insulin (μU/l) +

minutes after glucose load

0 30 60 90 120