Primary Aldosteronism in Diabetic Subjects with Resistant Hypertension

Received for publication 8 January 2007 and accepted in revised form 30 March 2007.

Guillermo E. Umpierrez, M.D.
Paul Cantey, M.D., M.P.H.
Dawn Smiley, M.D.
Andres Palacio, M.D.
Diana Temponi, M.D.
Karen Luster, M.D.
Arlene Chapman, M.D.

Department of Medicine, Emory University School of Medicine, Atlanta, Georgia

Short title: Primary Aldosteronism in Type 2 Diabetes

Acknowledgments:

Dr Umpierrez is supported by research grants from the American Diabetes Association (7-03-CR-35), American Heart Association (0555306B), and National Institutes of Health: R03 DK073190-01 and General Clinical Research Center Grant M01 RR-00039.

Correspondence:
Guillermo E. Umpierrez, M.D.
Associate Professor of Medicine
Associate Director, General Clinical Research Center
Emory University School of Medicine
Director, Diabetes and Endocrinology Section
Grady Health System
49 Jesse Hill Jr Dr
Atlanta, GA 30303
E-mail: geumpie@emory.edu
ABSTRACT
Background: Despite the high prevalence of hypertension in patients with type 2 diabetes, the prevalence of primary aldosteronism in this population has not been determined.
Methods: One hundred subjects with type 2 diabetes and resistant hypertension, defined as a blood pressure > 140/90 mm Hg despite the use of ≥ 3 antihypertensive agents, were screened for primary aldosteronism. Screening was performed by measuring plasma aldosterone (PAC)/plasma renin activity (PRA) ratio. Subjects with a PAC/PRA ratio >30 ng·mL⁻¹·h⁻¹ underwent confirmatory salt load testing. Diagnostic criteria included a 24-hour urine aldosterone ≥12 mcg during the third day of oral salt load or a PAC ≥ 5 ng/dL after the 4-hour intravenous saline load.
Results: Thirty four subjects had a PAC/PRA ratio >30 ng·mL⁻¹·h⁻¹. Fourteen subjects (14%, 95% CI: 7.2-20.8) had a confirmed diagnosis of primary aldosteronism. Ninety three patients were African Americans. There were no differences in age, glycemic control, and number of antihypertensive drugs between subjects with and without primary aldosteronism. Subjects with primary aldosteronism had lower serum potassium (3.7 ± 0.4 vs. 4.0 ± 0.4 mmol/L, p = 0.012), higher PAC (15.6 ± 8 vs. 9.1 ± 6 ng/dL, p = 0.0016), and higher PAC/PRA (98 ± 74 vs. 21 ± 30 ng·mL⁻¹·h⁻¹, p<0.001) than patients without primary aldosteronism.
Conclusion: Primary aldosteronism is common in diabetic patients with resistant hypertension, with a prevalence of 14%. Our results indicate that diabetic subjects with poorly controlled hypertension on ≥3 antihypertensive drugs should be screened for primary aldosteronism.
INTRODUCTION

Diabetes and hypertension coexist in approximately 40 to 60% of patients with type 2 diabetes [1, 2]. Diabetic subjects have a 1.5 – 3 times increased prevalence of hypertension compared to non-diabetics [2, 3], with 50% of adults with diabetes having hypertension at the time of diagnosis [4]. The coexistence of these two conditions is associated with increased risk of retinopathy, nephropathy, and cardiovascular disease [1, 5]. Randomized prospective clinical trials have shown that rigorous blood pressure control in patients with diabetes reduces the risk of microvascular complications, cardiovascular events and death [6-8]. The risk reduction seen with hypertension control in patients with diabetes is substantially greater than that seen in persons in the general population who have similar blood pressure levels [9]. Epidemiological analyses show that in diabetic subjects a blood pressure > 120/70 mmHg is associated with increased cardiovascular event rates and mortality [3, 9]. There is no threshold value for blood pressure, and risk continues to decrease well into the normal range. Based on these findings, the Professional Practice Committee of the American Diabetes Association recommended a blood pressure goal of < 130/80 mmHg for adult patients with diabetes [2, 8]. Achieving blood pressure control in subjects with diabetes, however, is difficult and frequently requires the use of ≥ 3 antihypertensive agents [10, 11]. Less than 50% of people with diabetes achieve blood pressure goals [5].

Resistant hypertension, defined as a failure of concomitant use of ≥ 3 different classes of antihypertensive agents to control blood pressure to < 140/90 mm Hg, is a serious and common problem. It is present in 10 to 30% of patients with essential hypertension [12, 13]. Patients with resistant hypertension seem to differ from other hypertensive subjects in three ways: they have more severe hypertension at diagnosis, they develop more end-organ damage, and they are more likely to have secondary hypertension [12, 13]. Primary aldosteronism is the most common cause of mineralocorticoid hypertension. Primary aldosteronism was previously believed to account for less than 1% of hypertensive patients; however, recent studies applying the PAC/PRA ratio as a screening test have reported a much higher prevalence of this disease, accounting for 10 to 32% of the patients with essential hypertension [11, 14-16] and 50% of patients with non-diuretic induced hypokalemia [17]. Despite the high prevalence of resistant hypertension among diabetic patients, the prevalence of primary aldosteronism is not known because screening for primary aldosteronism is seldom performed. Accordingly, this study aimed to determine the prevalence of primary aldosteronism in diabetic subjects with poorly controlled hypertension despite treatment with multiple antihypertensive agents.

MATERIAL AND METHODS

A total of 100 consecutive adult subjects with type 2 diabetes and resistant hypertension, defined as a blood pressure > 140/90 mm Hg despite the use of ≥ 3 antihypertensive agents, were screened for primary aldosteronism. Screening was performed while subjects continued their usual blood pressure medications, as it was felt to be unethical to stop blood pressure medications in this high-risk population. Subjects taking aldosterone antagonists were excluded from the study. Three blood pressure measurements were taken 5 minutes apart, and the average of the last two measurements were used for data analysis. Blood samples were drawn in the morning after the subject had been resting in a sitting position for 30 minutes. Screening studies
included measurement of PAC and PRA, and the calculation of the PAC/PRA ratio [18-20]. Hypertensive subjects with a PAC/PRA ratio > 30 ng·mL⁻¹·h⁻¹ underwent further studies to confirm the diagnosis of primary aldosteronism. Subjects with a serum potassium <3.5 mEq/l received KCl 40 mEq per day for 1 week. Once serum potassium was ≥ 3.5 mEq/l, subjects were re-screened (as hypokalemia suppresses PAC and lower the PAC/PRA ratio). Confirmatory studies included measurement of urinary aldosterone after a 3-day oral salt-load or the measurement of PAC after an intravenous saline load (Figure 1). The first 11 subjects in this study underwent the 3-day oral salt load. Most subjects were instructed to add 2g NaCl packages to each meal in addition to routine salt use for 3 consecutive days. During the third day of the oral salt load, a 24 hour urine collection was performed, and subjects brought the urine to the laboratory on the following morning before 9:00 a.m. To facilitate the conduct of the study by avoiding the 24 hour urine collection, we modified the protocol by substituting the oral salt load with a 4-hour intravenous saline suppression test. All remaining subjects underwent an IV saline suppression test. For this test, 2 liters of normal saline (0.9% solution) were infused over 4 hours at 500 ml/hour. The diagnosis of primary aldosteronism was established if the 24 hour urinary aldosterone concentration was ≥12 mcg (33.3 nmol/d) during the third day of salt load, or if the PAC ≥ 5.0 ng/dL after the 4-hour intravenous saline load [21-23]. Subjects with confirmed diagnosis of primary aldosteronism were referred to the endocrine service for adrenal imaging, localization studies and management. The research protocol was performed in the outpatient Grady Diabetes Clinic Research Laboratory or the Grady Clinical Research Center (GCRC).

All subjects in this study had a known history of type 2 diabetes for > 3 months, age between 18 and 75 and were treated with ≥ 3 antihypertensive drugs. Exclusion criteria included treatment with spironolactone or eplerenone, hemoglobin A1C > 9.0%, severe uncontrolled hypertension (>180/110 mm Hg), history of heart failure (New York Heart Association Class III or IV), angina pectoris, serum creatinine >1.8 mg/dl, pregnancy, breast-feeding, or on oral contraceptives, clinically relevant hepatic disease (ALT 2.5 times the upper limits of normal), drug or alcohol abuse, and subjects with known primary aldosteronism or suspected history of pheochromocytoma, Cushing’s syndrome, or hyperthyroidism.

Analytic methods. Plasma aldosterone concentration, PRA, and urinary aldosterone were measured by commercial laboratories using standard techniques. PRA and PAC levels were measured by radioimmunoassay. The reference range for PRA is 1.31 to 3.95 ng/mL per hour. The reference range for PAC is 4.0 to 31.0 ng/dL. The reference range for urinary aldosterone is 2 to 16 g/24-hour. Plasma glucose was measured using the glucose oxidase method.

Statistical analysis. All data in the text, table and figures are expressed as mean ± standard deviation unless otherwise noted. Comparisons of continuous variables between groups were carried out using unpaired t-test. The Wilcoxon test was used when data were skewed (i.e., PRA). For comparison of categorical variables, chi-square (χ²) analyses were performed. A two-tailed p-value of < 0.05 was considered significant. All analysis was performed using SAS 9.1 statistical software (Cary, NC).

RESULTS

A total of 100 consecutive subjects with diabetes and resistant hypertension underwent screening. The clinical characteristics of study subjects are shown in Table 1. Most subjects in this study were from minority ethnic groups and included 93
blacks, 5 Caucasians, 1 Hispanic, and 1 Native American. Study subjects had a mean age of 59 ± 9 years (range 32 – 74 years), a mean duration of diabetes of 8.9 ± 7 years (range 3 months to 30 years), and a mean history of hypertension of 16.2 ± 12 years (range 1 – 48 years). The mean body mass index (BMI) was 34.4 ± 8 kg/m², with three-fourths of subjects having a BMI > 30 kg/m². The mean serum electrolytes were within normal limits. The mean serum potassium was 4.0 ± 0.4 mmol/l with only 15 subjects having a serum potassium ≤ 3.5 mmol/l. The mean systolic blood pressure was 157 ± 16 mm Hg and diastolic blood pressure was 90 ± 9 mm Hg. The mean number of antihypertensive drugs was 3.7 ± 0.8. Ninety-eight percent of subjects were taking an angiotensin converting enzyme inhibitor (ACE-I) or an angiotensin receptor blocker (ARBs), 92% were taking a diuretic, 73% were taking a beta-blocker, 62% were taking a calcium channel blocker, and 31% were taking an alpha-blocker or other agent such as clonidine or hydralazine.

There were no statistically significant differences in ethnic distribution, age, years of hypertension, years of diabetes, BMI, blood pressure, hemoglobin A1c, number of antihypertensive agents or types of antihypertensive agent between subjects with and without primary aldosteronism. The mean systolic and diastolic blood pressures were 157 ± 15 mm Hg and 93 ± 10 mm Hg in subjects with primary aldosteronism and 158 ± 17 and 89 ± 8 mm Hg in subjects without primary aldosteronism. Similarly, we did not observe differences in the number of antihypertensive agents with 43% and 53% of subjects with and without primary aldosteronism receiving ≥ 4 drugs.

A total of 34 subjects (34%) had an increased PAC/PRA ratio >30 ng·mL⁻¹·h⁻¹, and 14 subjects (14%) had a confirmed diagnosis of primary aldosteronism. Compared to subjects with without primary aldosteronism, subjects with primary aldosteronism had a lower serum potassium (3.7 ± 0.4 mmol/L vs. 4.0 ± 0.4 mmol/L, p=0.012), a lower serum creatinine (0.9 mg/dL ± 0.2 vs. 1.0 mg/dL ± 0.2, p=0.018), a higher PAC (15.6 ± 8 ng/dL vs. 9.1 ng/dL ± 6, p=0.0016), a lower PRA (0.2 ± 0.1 ng/mL vs. 5.5 ± 12 ng/mL, p<0.001), and a higher PAC/PRA ratio (98 ± 74 ng·mL⁻¹·h⁻¹ vs. 21 ± 30 ng·mL⁻¹·h⁻¹, p<0.0001).

Fifty-five subjects (55%) with resistant hypertension had suppressed PRA (< 1 ng/dL) or salt-sensitive hypertension. All subjects with primary aldosteronism and 41 subjects without primary aldosteronism had a PRA < 1 ng/dL. Twenty-two subjects without primary aldosteronism had a PAC/PRA ratio >30 ng·mL⁻¹·h⁻¹. PAC ≥ 15 ng/dL, a commonly used criteria for screening of primary aldosteronism [20, 21, 23], was observed during the initial screening 18 subjects. Although the mean PAC during screening was 15.6 ± 8.3 ng/dL, 8 subjects with documented primary aldosteronism had a PAC < 15 ng/dL.

DISCUSSION

Approximately 20 million people in the US have diabetes mellitus [24], and another 50 million have hypertension [25]. Between 8 and 12 million diabetics have hypertension [1, 2, 25]. The co-existence of hypertension and diabetes accelerates the course of microvascular and macrovascular disease [1, 26, 27]. Hypertension markedly increases the risk for CVD and mortality in patients with type 2 diabetes. Randomized prospective clinical trials have shown that rigorous blood pressure control in patients with diabetes reduces macrovascular as well as microvascular complications [2, 6, 28, 29]. It was estimated that for each 10 mm Hg reduction in systolic blood pressure there is a 13% reduction in microvascular complications, a 12% decreased risk of fatal and non-fatal myocardial infarction, and a
17% decreased risk of death [6, 29]. In the HOT trial, a four-point difference in diastolic blood pressure (85 mm Hg vs. 81 mm Hg) resulted in a 51% decrease in risk for cardiovascular events in patients with diabetes [28]. Despite this strong evidence about the benefit of blood pressure control, nearly 75% of diabetic patients do not achieve good blood pressure control [25].

Primary aldosteronism is the most common endocrinologic cause of secondary hypertension. In recent years, with increased awareness and screening, the number of patients diagnosed with primary aldosteronism has increased by 5-to-10 fold accounting for 5-32% of the population with resistant hypertension [11, 14-16, 18, 19, 30-32]. Notably, however, there is little data that specifically examines the prevalence of primary aldosteronism in diabetic patients. Our study indicates that the prevalence of primary aldosteronism in patients with type 2 diabetes is similar to that reported in non-diabetic subjects with resistant hypertension [13, 20]. Of interest, we observed no differences in age, glucose control, or in the number or type of antihypertensive drugs between patients with and without primary aldosteronism. Given the importance of blood pressure control and the significant prevalence of primary aldosteronism in subjects with poorly controlled hypertension, all diabetics who have not met their blood pressure goals despite treatment with ≥ 3 drugs should be screened for primary aldosteronism.

The PAC/PRA ratio is considered the screening test of choice for primary aldosteronism [33, 34]. In the current study, patients were screened while being maintained on their prescribed antihypertensive medications. Angiotensin converting enzyme inhibitors, ARBs, and diuretics have been reported to increase PRA, calcium channel blockers to suppress aldosterone release, and beta blockers to suppress PRA, thereby potentially confounding the assessment of PAC/PRA ratio [35-37]. Recent studies, however, have demonstrated that measurement of the PAC/PRA ratio to screen for primary aldosteronism is not significantly affected by concurrent antihypertensive [19, 20, 34, 38]. In addition, if there is a confounding effect, it would most likely result in an underestimation of the prevalence of PAC/PRA ratio, because the most commonly used antihypertensive agents in the current study (ACE-I, ARBs, and diuretics) tend to increase PRA, resulting in an increased number of falsely negative results [11, 13]. In our study population, the possible effects of continuing therapy during screening were unavoidable, as we felt that it would be unethical and unsafe to discontinue prescribed therapies in subjects who already had uncontrolled blood pressure control.

The PAC/PRA ratio has been criticized by some who claim that the ratio is overly renin-dependent and has low specificity [39]. The specificity of a high PAC/PRA ratio is only modest whether measured in participants on or off antihypertensive drug therapy (74% and 75%, respectively). To improve the specificity of the ratio (decrease the number of false positives), some have advocated the addition of a threshold value of aldosterone (> 15 ng/dL) as part of the screening criteria [20, 31]. Although such a strategy increases the specificity of the test, it has been shown to markedly decrease its sensitivity (increases the number of false negatives). Recently, Schwartz and Turner [19] reported that using a threshold value of PAC >15 ng/dL, increased the specificity from 74% to 97% but markedly decreased the sensitivity from 73% to 33%. In agreement with this report, all subjects with primary aldosteronism in our study had a high PAC/PRA ratio (>30 ng·mL⁻¹·h⁻¹), however, only 43% of the subjects had a PAC > 15 ng/dL during the initial screening.
Given the importance of blood pressure control in the diabetic population, using screening criteria that would miss a substantial number of patients with an endocrinologic cause of hypertension does not make sense. Although eliminating a PAC threshold will increase false positive screens, these are easily distinguished from true positives with salt suppression testing. Thus, based on our findings and previous reports, the use of the PAC/PRA ratio may be preferable in screening for primary aldosteronism in patients with resistant hypertension.

We acknowledge several limitations in our study including a relative small number of subjects, the fact that most subjects (93%) were African-American, and the lack of a nondiabetic control group. The small number of subjects limits what can be said about the positive and negative predictive values of the PAC/PRA ratio. There is little data specific to African-American in regards to primary aldosteronism. Several reports have shown that extracellular fluid volume is an important contributor to the pathogenesis of low-renin hypertension and to hypertension in blacks [37-39]. Blacks have lower levels of plasma renin activity and more salt-sensitive (salt-dependent) hypertension than Caucasians [40, 42]. It has been estimated that the prevalence of salt-sensitive hypertension in hypertensive blacks is 50-73% versus 27-56% in hypertensive Caucasians [41, 43, 44]. Salt dependency is associated with favorable response to diuretics but poorer efficacy of ACE inhibitors or angiotensin receptor antagonists when these drugs are used as monotherapy [40, 41]. Moreover, salt dependency is not only a determinant of blood pressure response but is now classified as a risk factor for cardiovascular and renal complications including left ventricular hypertrophy, microalbuminuria, insulin resistance and metabolic syndrome, and increased systemic and renal vascular resistance [12, 38, 40-42]. Despite the presence of lower renin activity in blacks, Calhoun et al [11] reported that in subjects with resistant hypertension, blacks have a similar prevalence of primary aldosteronism compared to Caucasians.

The American Diabetes Association advocates that hypertension should be treated aggressively to achieve and maintain a target blood pressure <130/80 mmHg [3]. In our study, we limited screening to subjects with a blood pressure >140/90 mm Hg on ≥3 different antihypertensive agents. Thus, the prevalence of primary aldosteronism and the cost effectiveness of screening diabetic patients with blood pressure >130/80 mmHg needs to be examined in future studies.

In summary, we observed a prevalence of 14% of primary aldosteronism in diabetic subjects with poorly controlled hypertension on ≥3 antihypertensive agents. These results are of great clinical importance because patients with primary aldosteronism have a high incidence of renal and cardiovascular complications and increased mortality, and because aldosterone blockade can ameliorate renal and cardiovascular complications in patients with hypertension and with primary aldosteronism [34, 46-50]. Accordingly, diabetic patients with poorly controlled hypertension on ≥3 antihypertensive drugs should be screened for primary aldosteronism using the PAC/PRA ratio followed by salt suppression testing in those with a positive screening ratio.
REFERENCES
40. Sealey JE, Blumenfeld JD, Bell GM, Pecker MS, Sommers SC, Laragh JH: On the renal basis for essential hypertension: nephron heterogeneity with discordant renin secretion and

Table 1. Clinical Characteristics of Subjects with Resistant Hypertension with and Without Primary Aldosteronism

<table>
<thead>
<tr>
<th>Variables</th>
<th>All Subjects</th>
<th>No Primary Aldosteronism</th>
<th>Primary Aldosteronism</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of subjects</td>
<td>100</td>
<td>86</td>
<td>14</td>
</tr>
<tr>
<td>Age (yr)</td>
<td>59 ± 9</td>
<td>60 ± 9</td>
<td>57 ± 6</td>
</tr>
<tr>
<td>Race</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Black (%)</td>
<td>93 (93)</td>
<td>80 (93)</td>
<td>13 (93)</td>
</tr>
<tr>
<td>Caucasian/Hispanic/other</td>
<td>5/1/1</td>
<td>4/1/1</td>
<td>1/0/0</td>
</tr>
<tr>
<td>BMI (kg/m²)</td>
<td>34.4 ± 8</td>
<td>34.5 ± 8</td>
<td>34.2 ± 8</td>
</tr>
<tr>
<td>Duration DM (yr)</td>
<td>8.9 ± 7</td>
<td>8.7 ± 7</td>
<td>9.8 ± 8</td>
</tr>
<tr>
<td>Duration hypertension (yr)</td>
<td>16 ± 12</td>
<td>16 ± 12</td>
<td>15 ± 7</td>
</tr>
<tr>
<td>SBP (mm Hg)</td>
<td>157 ± 16</td>
<td>158 ± 17</td>
<td>157 ± 15</td>
</tr>
<tr>
<td>DBP (mm Hg)</td>
<td>90 ± 9</td>
<td>89 ± 8</td>
<td>93 ± 10</td>
</tr>
<tr>
<td>Mean # BP drugs*</td>
<td>3.7 ± 1</td>
<td>3.7 ± 1</td>
<td>3.6 ± 1</td>
</tr>
<tr>
<td>Number of subjects on BP agent (%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ACE-I or ARB</td>
<td>96 (98)</td>
<td>83 (99)</td>
<td>13 (93)</td>
</tr>
<tr>
<td>Diuretic</td>
<td>90 (92)</td>
<td>77 (92)</td>
<td>13 (93)</td>
</tr>
<tr>
<td>Beta Blocker</td>
<td>72 (74)</td>
<td>61 (73)</td>
<td>11 (79)</td>
</tr>
<tr>
<td>Calcium Channel Blocker</td>
<td>61 (62)</td>
<td>52 (62)</td>
<td>9 (64)</td>
</tr>
<tr>
<td>Other</td>
<td>30 (31)</td>
<td>26 (31)</td>
<td>4 (29)</td>
</tr>
<tr>
<td>Potassium (mEq/L)</td>
<td>4 ± 0.4</td>
<td>4 ± 0.4†</td>
<td>3.7 ± 0.4†</td>
</tr>
<tr>
<td>Creatinine (mg/dL)</td>
<td>1.0 ± 0.2</td>
<td>1.0 ± 0.2†</td>
<td>0.9 ± 0.2†</td>
</tr>
<tr>
<td>Hemoglobin A1C (%)</td>
<td>7.1 ± 1.4</td>
<td>7.1 ± 1.4</td>
<td>6.9 ± 1.1</td>
</tr>
<tr>
<td>PAC (ng/dL)</td>
<td>10 ± 7</td>
<td>9.1 ± 6*</td>
<td>15.6 ± 8*</td>
</tr>
<tr>
<td>PRA (ng/mL)</td>
<td>4.8 ± 11</td>
<td>5.5 ± 12</td>
<td>0.2 ± 0.1*</td>
</tr>
<tr>
<td>PAC/PRA ratio (ng/mL/hr)</td>
<td>33 ± 47</td>
<td>21 ± 30†</td>
<td>98 ± 74†</td>
</tr>
</tbody>
</table>

Except where noted values are mean ± standard deviation.
† p<0.05
* p<0.001

SBP: systolic blood pressure, DBP: diastolic blood pressure, ACE-I: angiotensin converting enzyme inhibitors, ARB: angiotensin receptor blockers, PAC: plasma aldosterone concentration, PRA: plasma renin activity. Plasma aldosterone is expressed in conventional units (ng/dL). To convert to SI Units (ng/dl to nmol/L = multiply by 0.0277).
Figure 1. Proposed Diagnostic Algorithm for Primary Aldosteronism

Graph 1. Proposed Diagnostic Algorithm for Primary Aldosteronism

<table>
<thead>
<tr>
<th>Diabetic subjects with resistant HTN (BP > 140/90 mmHg on ≥3 BP drugs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Screening: Plasma Aldosterone Concentration/Plasma Renin Activity Ratio > 30 ng/dl/hr</td>
</tr>
<tr>
<td>Oral salt load: 3-day salt load (2 gram of sodium t.i.d. (on top of patient’s usual salt intake))</td>
</tr>
<tr>
<td>Intravenous salt load: Normal Saline (0.9%) at 500 ml/hour × 4 hours</td>
</tr>
<tr>
<td>During 3rd day of oral salt load: collect 24 h urine for aldosterone concentration</td>
</tr>
<tr>
<td>Measure plasma aldosterone concentration after 2 liters of Normal Saline</td>
</tr>
<tr>
<td>Primary Aldosteronism: 24 h urinary aldosterone > 12 mcg</td>
</tr>
<tr>
<td>Primary Aldosteronism: Plasma aldosterone > 5 ng/dl</td>
</tr>
</tbody>
</table>