RAandomized Study of Basal Bolus Insulin Therapy in the Inpatient Management of Patients with Type 2 Diabetes (RABBIT 2 Trial)

Received for publication 22 February 2007 and accepted in revised form 7 May 2007.

1Guillermo E. Umpierrez, M.D.
1Dawn Smiley, M.D.
2Ariel Zisman, M.D.
2Luz M Prieto, M.D.
1Andres Palacio, M.D.
1Miguel Ceron, M.D.
2Alvaro Puig, M.D.
1Roberto Mejia, Ph.D.

1Emory University School of Medicine, Atlanta, Georgia
2University of Miami School of Medicine, Miami, Florida

Short Title: Basal Bolus versus SSI in T2DM

Correspondence:
Guillermo E. Umpierrez, M.D.
Associate Director, General Clinical Research Center
Emory University School of Medicine
Grady Health System
49 Jesse Hill Jr Dr
Atlanta, GA 30303
E-mail: geumpie@emory.edu
ABSTRACT

Background: Few studies have focused on the optimal management of hyperglycemia in non-ICU patients with type 2 diabetes mellitus.

Research Design and Methods: Prospective, multicenter randomized trial to compare the efficacy and safety of a basal/bolus insulin regimen to sliding scale regular insulin (SSI) in patients with type 2 diabetes. A total of 130 insulin-naïve patients were randomized to receive glargine and glulisine (n= 65) or a standard SSI protocol (n= 65). Glargine was given once daily and glulisine before meals at a starting dose of 0.4 U/kg/day for BG 140-200 mg/dL or 0.5 U/kg/day for BG 201-400 mg/dL. SSI was given 4 times/day for BG >140 mg/dL.

Results: The mean admission blood glucose was 229 ± 6 mg/dL and hemoglobin A1C was 8.8 ± 2 %. A blood glucose target of < 140 mg/dl was achieved in 66% of patients in the glargine and glulisine group and 38% in the SSI. The mean daily blood glucose between groups ranged from 23 to 58 mg/dl, with an overall blood glucose difference of 27 mg/dL (p<0.01). Despite increasing insulin doses, 14% of patients treated with SSI remained with blood glucose > 240 mg/dl. There were no differences in the rate of hypoglycemia or length of hospital stay.

Conclusion: Treatment with insulin glargine and glulisine resulted significant improvement in glycemic control compared to the use of SSI alone. Our study indicates that a basal/bolus insulin regimen is preferred over SSI in the management of noncritically-ill, hospitalized patients with type 2 diabetes.

NCT registration Number: 00394407
INTRODUCTION:

Hyperglycemia in hospitalized patients is a common, serious, and costly health care problem with profound medical consequences. Increasing evidence indicates that the development of hyperglycemia during acute medical or surgical illness is not a physiologic or benign condition, but is a marker of poor clinical outcome and mortality (1-3). Extensive evidence from observational studies, including our own, indicate that in hospitalized patients with critical illness, hyperglycemia is associated with an increased risk of complications and mortality (3-9). Prospective randomized trials in critically-ill patients have shown that intensive glucose control reduces the risk of multiorgan failure, systemic infections, and short- and long-term mortality. Effective management of hyperglycemia is also associated with a decreased length of ICU and hospital stay (4; 6; 8-10), and decreased total hospitalization cost (11). The importance of glycemic control on outcome is not limited to patients in critical care areas, but also applies to patients admitted to general surgical and medical wards. In such patients, the presence of hyperglycemia has been associated with prolonged hospital stay, infection, disability after hospital discharge, and death (1; 5; 12). In general surgery patients, the relative risk for “serious” postoperative infections (sepsis, pneumonia, and wound infection) increased 5.7-fold when any postoperative day one blood glucose was > 220 mg/dL (12). More recently, studies in patients with community-acquired pneumonia reported that hyperglycemia was associated with increased risk of in-hospital complications and mortality (13; 14).

Insulin, given either intravenously as a continuous infusion or subcutaneously, is the most effective agent for immediate control of glycemia in the hospital. In the critical care setting, a variety of continuous insulin infusion protocols have been shown to be effective in achieving glycemic control with a low-rate of hypoglycemic events and improving hospital outcomes (6; 10; 15). In general medicine and surgery services, however, hyperglycemia is frequently overlooked and inadequately addressed. Several reports from academic institutions have shown that most patients are treated with SSI and that basal insulin is prescribed in less than half of patients (16; 17). Few clinical trials have focused on the optimal management of inpatient hyperglycemia in the non-critical setting. Accordingly, we conducted this prospective, randomized study to compare the efficacy and safety of a basal/bolus insulin regimen to SSI in patients with T2DM admitted to general medicine wards.

RESEARCH DESIGN AND METHODS:

In this multicenter, prospective, open-label randomized study, we enrolled 130 nonsurgical, insulin-naïve patients with a known history of diabetes greater than 3 months, aged 18 – 80 years, admitted to medical general services with a blood glucose level between 140 - 400 mg/dL. Further inclusion criteria included diabetes treatment with either diet alone or any combination of oral antidiabetic agents and the absence of diabetic ketoacidosis (18). Exclusion criteria included subjects without a known history of diabetes, ICU patients, the use of corticosteroid therapy, subjects expected to undergo surgery during the hospitalization course, patients with clinically relevant hepatic disease, serum creatinine ≥ 3.0 mg/dL, pregnancy, and any mental condition rendering the subject unable to understand the scope and possible consequences of the study. This study was conducted at Grady Memorial Hospital in Atlanta, Georgia and at the Jackson Memorial Hospital in Miami, Florida. The institutional review boards at
Emory University and the University of Miami approved the study protocol. All patients were managed by members of the internal medicine residency program, who received a copy of the assigned treatment protocol. The primary care team decided on the treatment for the medical problem(s) for which patients were admitted. No follow up visit after discharge is included in this study. A teaching endocrinologist rounded daily with the house officers.

Patients were randomly assigned to receive either a basal/bolus regimen with insulins glargine and glulisine (Lantus® and Apidra®, Sanofi-Aventis) or to SSI. Oral antidiabetic drugs were discontinued on admission. Patients treated with glargine and glulisine were started at a total daily dose of 0.4 unit/kg for blood glucose concentration between 140 - 200 mg/dL, or 0.5 unit/kg for those between 201 - 400 mg/dL (Table 1A). Half of the total daily dose was given as glargine once daily and the other half was given as glulisine before meals. Insulin glulisine was given in three equally divided doses before each meal. To prevent hypoglycemia, if a patient was not able to eat, the dose of insulin glargine was given but, the premeal insulin glulisine was held until meals were resumed. The daily dose of insulin glargine was increased by 20% if the fasting and premeal blood glucose were > 140 mg/dL. The dose of insulin glargine was reduced by 20% after an episode of hypoglycemia (< 70 mg/dL). Supplemental insulin with insulin glulisine was given in addition to the schedule premeal insulin for blood glucose of > 140 mg/dL per the “sliding scale” protocol (Table 1C).

Patients randomized to SSI received regular insulin four times daily for glucose levels of > 140 mg/dL (Table 1B). Patient able to eat received regular insulin before each meal and at bedtime according the “usual” column of the sliding scale protocol. Patients not able to eat received regular insulin every 6 hours following the “sensitive” column. If fasting and pre-meal plasma glucose levels remained persistently >140 mg/dL in the absence of hypoglycemia, the insulin dosing was progressively increased from the sensitive to usual column, or from the usual to resistant column. If the mean daily blood glucose level was > 240 mg/dL, or if three consecutive values were > 240 mg/dL on the maximal sliding scale dose, patients were switched to basal bolus regimen starting at a total daily dose of 0.5 unit/kg. If a patient on SSI developed hypoglycemia, the insulin scale was decreased from resistant to usual column or from the usual to sensitive column.

Blood glucose was measured before each meal and at bedtime (or every 6 hours if a patient was not eating) using a glucose meter. In addition, glucose was measured at any time if a patient experienced symptoms of hypoglycemia. Hemoglobin A1c level was measured on the first day of hospitalization. The result of blood glucose values are presented as fasting glucose, random glucose (non-fasting glucose measured at any time during the day), and mean blood glucose during the hospital stay (all glucose values during the hospital stay.

The goal of insulin therapy was to maintain fasting and pre-meal blood glucose levels lower than 140 mg/dL while avoiding hypoglycemia. The primary end-point was to determine differences in glycemic control as measured by mean daily blood glucose concentration between treatment groups. Secondary outcomes include differences between treatment groups in number of hypoglycemic events, number of episodes of severe hyperglycemia, length of hospital stay, and mortality rate.

Statistical analysis was performed using the SPSS software package. Change in blood glucose during the study period was analyzed by repeated measures analysis of
variance (ANOVA). A p-value of <0.05 was considered significant.

RESULTS

A total of 130 insulin-naïve patients with T2DM admitted to general medicine services were recruited. Of them, 65 patients were randomized to receive insulin glargine and glulisine and 65 patients received SSI. The clinical characteristics of study patients are shown in Table 2. There were no significant differences in the mean age, racial distribution, body mass index, admission blood glucose, or hemoglobin A1C between treatment groups. The most common admitting illnesses included a variety of cardiovascular (40%), infectious (20%), pulmonary (18%), renal (4%), gastrointestinal (12%) disorders. The mean hospital LOS was 5.3 ± 6 days in patients treated with basal bolus and 5.1 ± 4 days in the SSI treated group (p=NS). Only one death was reported in a patient in the basal bolus treatment group admitted with shortness of breath who later developed respiratory failure secondary to a pulmonary embolism.

Patients treated with insulin glargine and glulisine had greater improvement in glycemic control than SSI (p<0.01). The mean admission blood glucose for study patients was 227 ± 65 mg/dL and the mean A1C was 8.8 ± 2 %. The mean admission glucose in the glargine and glulisine and SSI treatment groups was 229 ± 71 mg/dl and 225 ± 60 mg/dl, respectively (p=NS). Compared to patients treated with basal bolus regimen treatment with SSI was associated with shortness of breath who later developed respiratory failure secondary to a pulmonary embolism.

Nine patients (14%) treated with SSI remained with blood glucose of > 240 mg/dL despite increasing the SSI dose to the maximal or insulin resistant scale (Figure 2). Compared to the remaining patients treated with SSI, these patients (age 57 ± 10 yr, BMI: 29 ± 7 kg/m²) had a higher but not significant difference in mean admission glucose (252 ± 73 mg/dL vs. 220 ± 57 mg/dL, p= 0.1). Glycemic control rapidly improved in all of the SSI failure subjects after they were switched to basal/bolus insulin regimen.

The mean insulin daily dose was significantly higher in the basal bolus regimen compared to SSI treatment group (P<0.001). The mean daily dose of insulin glargine was 22 ± 2 units and the daily dose of insulin glulisine was 20 ± 1 units. A total of 26 patients had the lantus dose adjusted and 44 patients required supplemental glulisine insulin during the hospital stay. Patients treated with SSI received a mean daily dose of 12.5 ± 2 units of regular insulin per day, with approximately half of patients receiving less than 10 units per day.

Hypoglycemia (defined as a blood glucose < 60 mg/dL) occurred in 2 patients in each treatment group. Of the 1,005 glucose readings in the insulin glargine and glulisine treatment group, only four (0.4%) glucose values were less than 60 mg/dL and no glucose values were less than 40 mg/dL. Of the 1,021 glucose readings in the SSI group, only two (0.2%) glucose values were less than 60 mg/dL and no glucose values were less
than 40 mg/dL. Hypoglycemia was corrected with oral dextrose, and none of these episodes was associated with adverse outcomes.

CONCLUSIONS
This is the first prospective, randomized clinical trial aimed to compare the efficacy and safety of a basal/bolus insulin regimen to sliding scale regular insulin in non-critically ill patients with type 2 diabetes. We observed that treatment with insulin glargine and glulisine results in a significant improvement in glycemic control compared to the sole use of SSI. The mean daily glucose difference between groups ranged from 23 to 58 mg/dl during days 2 to 6 of therapy. A blood glucose target of < 140 mg/dL was achieved in two-thirds of patients treated with insulin glargine and glulisine whereas only one third of those treated with SSI achieved target glycemia. Despite increasing insulin doses, 14% of patients treated with SSI had persistently elevated glucose levels > 240 mg/dL. In such patients, glycemic control rapidly improved after switching to the basal/bolus insulin regimen. Based on these results, we conclude that a basal/bolus insulin regimen is preferred over SSI alone in the management of noncritically ill patients with type 2 diabetes.

Differences in glycemic control between treatment groups can be explained by the fact that SSI regimen treats hyperglycemia after it has already occurred instead of preventing the occurrence of hyperglycemia (2; 5; 19). In addition, we found significant differences in daily insulin dose between patients treated with basal/bolus regimen compared to SSI treatment group. Patients randomized to receive insulin glargine and glulisine received approximately three times higher total insulin dose (~40 units per day) than those treated with SSI (~ 15 units per day). Despite the higher insulin dose and improved glycemic control, the use of the basal/bolus insulin regimen was safe and was associated with a low rate of hypoglycemic events. The overall rate of hypoglycemia (<60 mg/dL) occurred in 3% of patients in each treatment group and none were associated with clinical adverse outcome. There were no episodes of severe hypoglycemia (glucose < 40 mg/dL) in either treatment group. Minimizing the rate of severe hypoglycemia events is of major importance in hospitalized patients because it has been shown be an independent risk factor of poor clinical outcome (12).

Despite increasing evidence in support of intensive glycemic control in critically-ill patients, glucose control continues to be deficient and is frequently overlooked in general medicine and surgery services (1; 2; 5). Many factors could explain the lack of glycemic control in the hospital. First, the overwhelming majority of hospitalizations in patients with hyperglycemia occur for a variety of comorbid conditions (1; 2; 20), with less than 10% of hospital discharges in the U.S. listing diabetes as the primary diagnosis (5). Second, physicians often perceive hyperglycemia as a consequence of stress and acute illness, and often delay treatment until blood glucose levels exceeds 200 mg/dL (2; 21). Third, fear of hypoglycemia constitutes a major barrier to efforts to improve glycemic control, especially in patients with poor caloric intake (5; 22). Finally, physicians frequently hold their patient’s previous outpatient antidiabetic regimen and initiate “sliding scale” coverage with regular insulin, a practice associated with limited therapeutic success and suboptimal glycemic control (16; 17; 23; 24).

The use of SSI was first introduced by Elliot P. Joslin shortly after the discovery of insulin (25). He recommended giving regular insulin per sliding scale according to the amount of glycosuria. Following the introduction of capillary blood glucose monitoring in the 1970’s, urinary algorithms were abandoned and different algorithms
became available using blood glucose targets (26; 27). Although these algorithms were not intended to be used as the sole method of insulin administration, they were rapidly modified and adopted by practitioners and resulted in the sliding scale algorithms currently available. Potential advantages of the sliding scale insulin are convenience, simplicity, and promptness of treatment. It is possible that in some patients with good glycemic control treated with diet alone or with oral antidiabetic agents prior to admission, or in those subjects with mild hyperglycemia kept NPO, the use of SSI may be sufficient for glycemic control over the short-term. The use of SSI, however, as a single insulin regimen in hospitalized subjects has never been associated with improved clinical outcome (23; 28-30). Yet this remains the most popular default regimen in the majority of institutions across the country.

We acknowledge the following limitations in this study. We excluded patients without a known history of diabetes prior to admission. Patients meeting these criteria make up a substantial percentage of hospitalized patients. We recently reported that hyperglycemia was present in 38% of patients admitted to the hospital, and that one-third of these patients had no history of diabetes prior to the admission (1). We also excluded patients treated with insulin and corticosteroids because they were considered at higher risk of severe hyperglycemia if treated with SSI. Another limitation is that the study was not powered to demonstrate differences in mortality or clinical outcome between treatment groups. A large prospective, randomized clinical trial of strict glycemic control is certainly needed to address these important issues. Such studies should include additional treatment regimes including the use of basal insulin alone (glargine, detemir, or NPH insulin) and fixed regular doses of regular insulin.

In summary, our basal/bolus insulin algorithm using insulin glargine once daily and insulin glulisine before meals represents a simple and more effective regimen than SSI for glucose control in noncritically-ill patients with type 2 diabetes. Despite the simplicity of SSI, this regimen fails to provide adequate glycemic control and should not be used in the management of hospitalized subjects with diabetes. Implementing standardized subcutaneous insulin order sets promoting the use of scheduled insulin therapy and discouraging the sole use of SSI are key interventions that might and reduce complications associated with severe hyperglycemia and hypoglycemia in hospitalized patients.

ACKNOWLEDGEMENTS
This investigator-initiated study was supported by an unrestricted grant from Sanofi-Aventis (Bridgewater, NJ, USA). Dr Umpierrez is supported by research grants from the American Heart Association (0555306B), and National Institutes of Health: R03 DK073190-01 and General Clinical Research Center Grant M01 RR-00039.
REFERENCES:

2. Diabetes Care 29:2739-2748, 2006
Table 1. Insulin Treatment Protocols:

<table>
<thead>
<tr>
<th>1.A. Basal Bolus Regimen with Insulin Glargine and Glulisine</th>
</tr>
</thead>
<tbody>
<tr>
<td>Insulin Orders:</td>
</tr>
<tr>
<td>• Discontinue oral antidiabetic drugs on admission.</td>
</tr>
<tr>
<td>• 0.4 units per kilogram of body weight per day when the admission blood glucose concentration is between 140-200 mg/dL</td>
</tr>
<tr>
<td>• 0.5 units per kilogram of body weight per day when the admission blood glucose concentration is between 201-400 mg/dL</td>
</tr>
<tr>
<td>• Give half of total daily dose as insulin glargine and half as insulin glulisine.</td>
</tr>
<tr>
<td>• Give insulin glargine once daily, at the same time of the day.</td>
</tr>
<tr>
<td>• Give insulin glulisine in three equally divided doses before each meal. Hold insulin glulisine if patient not able to eat.</td>
</tr>
<tr>
<td>Supplemental insulin:</td>
</tr>
<tr>
<td>• Give supplemental insulin glulisine following the “sliding scale” protocol (Table 2) for blood glucose > 140 mg/dL.</td>
</tr>
<tr>
<td>• If a patient is able and expected to eat all, give supplemental glulisine insulin before each meal and at bedtime following the “usual” column.</td>
</tr>
<tr>
<td>• If a patient is not able to eat, give supplemental glulisine insulin every 6 hours (6-12-6-12) following the “sensitive” column.</td>
</tr>
<tr>
<td>Insulin adjustment:</td>
</tr>
<tr>
<td>• If the fasting or mean blood glucose during the day is >140 mg/dL in the absence of hypoglycemia, increase insulin glargine dose by 20% every day.</td>
</tr>
<tr>
<td>• If a patient develops hypoglycemia (< 70 mg/dL), decrease glargine daily dose by 20%.</td>
</tr>
<tr>
<td>Blood glucose monitoring:</td>
</tr>
<tr>
<td>• Measure blood glucose before each meal and at bedtime (or every 6 hours if N.P.O.).</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1.B. Sliding Scale Regimen with Regular Insulin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Insulin Orders:</td>
</tr>
<tr>
<td>• Discontinue oral antidiabetic drugs on admission.</td>
</tr>
<tr>
<td>• If a patient is able and expected to eat all or most of his/her meals, give regular insulin before each meal and at bedtime following the “usual” column (1.C.).</td>
</tr>
<tr>
<td>• If a patient is not able to eat, give regular insulin every 6 hours (6-12-6-12) following the “sensitive” column.</td>
</tr>
<tr>
<td>Insulin adjustment:</td>
</tr>
<tr>
<td>• If fasting and pre-meal plasma glucose are persistently >140 mg/dL in the absence of hypoglycemia, increase insulin scale of insulin from sensitive to usual, or from the usual to resistant column.</td>
</tr>
<tr>
<td>• If a patient develops hypoglycemia (blood glucose <70mg/dL), decrease regular insulin from insulin resistant to usual column or from the usual to sensitive column.</td>
</tr>
</tbody>
</table>
Blood glucose monitoring:

- Measure blood glucose before each meal and at bedtime (or every 6 hours if a patient is N.P.O.).

I.C. Supplemental Insulin Scale

<table>
<thead>
<tr>
<th>Blood Glucose (mg/dL)</th>
<th>Insulin Sensitive</th>
<th>Usual</th>
<th>Insulin Resistant</th>
</tr>
</thead>
<tbody>
<tr>
<td>>141-180</td>
<td>2</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td>181-220</td>
<td>4</td>
<td>6</td>
<td>8</td>
</tr>
<tr>
<td>221-260</td>
<td>6</td>
<td>8</td>
<td>10</td>
</tr>
<tr>
<td>261-300</td>
<td>8</td>
<td>10</td>
<td>12</td>
</tr>
<tr>
<td>301-350</td>
<td>10</td>
<td>12</td>
<td>14</td>
</tr>
<tr>
<td>351-400</td>
<td>12</td>
<td>14</td>
<td>16</td>
</tr>
<tr>
<td>> 400</td>
<td>14</td>
<td>16</td>
<td>18</td>
</tr>
</tbody>
</table>

Check appropriate column below and cross out other columns

The numbers in each column indicate the number of units of glulisine or regular insulin per dose. Supplemental” dose is to be added to the scheduled dose of glulisine or regular insulin.
Table 2. Baseline Clinical Characteristics*

<table>
<thead>
<tr>
<th></th>
<th>Basal/Bolus</th>
<th>SSI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of patients</td>
<td>65</td>
<td>65</td>
</tr>
<tr>
<td>Age (yr)</td>
<td>56 ± 13</td>
<td>56 ± 11</td>
</tr>
<tr>
<td>Race, (W/B/H)</td>
<td>4/43/18</td>
<td>3/48/14</td>
</tr>
<tr>
<td>Gender (M/F)</td>
<td>42/23</td>
<td>21/44</td>
</tr>
<tr>
<td>BMI (kg/m2)</td>
<td>32 ± 8</td>
<td>32 ± 9</td>
</tr>
<tr>
<td>Length of hospital stay (days)</td>
<td>5.2 ± 6</td>
<td>5.1 ± 4</td>
</tr>
<tr>
<td>White blood cell $\times 10^6$</td>
<td>9.6 ± 4</td>
<td>8.7 ± 4</td>
</tr>
<tr>
<td>Hemoglobin (g)</td>
<td>13 ± 2</td>
<td>12.6 ± 2</td>
</tr>
<tr>
<td>Creatinine (mg/dL)</td>
<td>1.0 ± 0.5</td>
<td>1.1 ± 0.5</td>
</tr>
<tr>
<td>Hemoglobin A1C (%)</td>
<td>8.9 ± 2</td>
<td>8.7 ± 2.5</td>
</tr>
<tr>
<td>Admission blood glucose (mg/dL)</td>
<td>229 ± 71</td>
<td>225 ± 60</td>
</tr>
<tr>
<td>Mean blood glucose during hospital stay (mg/dL)</td>
<td>166 ± 32</td>
<td>193 ± 54*</td>
</tr>
<tr>
<td>Mean fasting blood glucose (mg/dL)</td>
<td>147 ± 36</td>
<td>165 ± 41¶</td>
</tr>
<tr>
<td>Mean random blood glucose (mg/dL)</td>
<td>164 ± 35</td>
<td>188 ± 45*</td>
</tr>
</tbody>
</table>

Values are mean ± SD

* p < 0.001
¶ p < 0.01
Figure Legends:

Figure 1.
Changes in blood glucose concentration in patients treated with glargine plus glulisine (close circles) and with sliding scale regular insulin (open circles).
* p: < 0.01, ¶ p: < 0.05
Figure 2.
Mean blood glucose concentration in subjects who remained with severe hyperglycemia despite increasing doses of regular insulin per sliding scale (open circles). Glycemic control rapidly improved after switching to basal bolus insulin regimen (closed circles).
¶ p: < 0.05