Variation of the transcription factor 7-like 2 gene predicts impaired fasting glucose in healthy young adults. The Cardiovascular Risk in Young Finns Study.

Received for publication 19 March 2007 and accepted in revised form 28 May 2007.

Olli T. Raitakari, Tapani Rönnemaa, Risto Huupponen, Liisa Viikari, Meng Fan, Jukka Marniemi, Nina Hutri-Kähönen, Jorma S.A. Viikari, Terho Lehtimäki

Running title: TCF7L2 variation and glucose in young adults.

Institutions in Finland: University of Turku: Departments of Clinical Physiology (OTR), Medicine (TR, JSAV), Pharmacology, Drug Development and Therapeutics (RKH.), Cardiovascular Research Centre (LV); National Public Health Institute: Department of Health and Functional Capacity, Turku (JM); Health Care District of Southwest Finland: Clinical Pharmacology, TYKSLAB (RKH); Tampere University Hospital: Departments of Pediatrics (NH-K) and Clinical Chemistry (TL); University of Tampere Medical School (TL, MF).

Correspondence:
Olli T. Raitakari
Department of Clinical Physiology, University of Turku
Kiinamyllynkatu 4-8, FIN-20521 Turku, FINLAND
Email: olli.raitakari@utu.fi
Recently, Grant et al. (1) reported association between type 2 diabetes and variation in the transcription factor 7-like 2 (TCF7L2) gene. Thereafter, the relation has been replicated in several populations (2-11). The mechanisms how TCF7L2 variants contribute to the development of type 2 diabetes are incompletely understood. To gain insight on potential mechanisms, we examined the effects of TCF7L2 on the incidence of impaired fasting glucose (IFG) in young adults.

RESEARCH DESIGN AND METHODS

The Young Finns Study is a longitudinal study that included 3,596 healthy children and adolescents at baseline in 1980 (12-14). In the present analysis, we used data collected in 1986 and 2001 to assess the effect TCF7L2 gene on IFG incidence. Details of methods have been described (15-18). IFG was defined as fasting glucose 5.6-7.0 mmol/L (19, 20). Homeostasis model assessment was used to assess beta-cell function (HOMA-B) and insulin resistance (HOMA-IR) (21). We genotyped two TCF7L2 single-nucleotide polymorphisms (SNP’s) 47833C>T (rs7903146) and 98368G>T (rs12255372) (22). These 2 SNP’s were shown robust associations with type 2 diabetes and were recommended to be genotyped in attempts at replication (1). Both genotype frequencies were in Hardy-Weinberg equilibrium. Linkage disequilibrium analysis showed that the alleles of two polymorphisms are tightly associated (D’=0.9, r²=0.7, p<0.001, χ²-test). Haplotypes were estimated using the PHASE program (23, 24). Statistical methods included analysis of variance, chi-square test and logistic regression. Statistical tests were performed with SAS version 8.1 and statistical significance was inferred at a 2-tailed P-value <0.05.

RESULTS

There were 11 subjects with type 2 diabetes. TCF7L2 rs7903146 genotype was significantly related with the prevalence of type 2 diabetes: CC 0.3%, CT 0.7%, and TT 2.8%, P=0.007. The age and sex adjusted odds ratios were 3.50 (95% CI 1.02 to 12.02, P=0.047) between CC vs. CT/TT groups, and 10.9 (95% CI 1.96 to 60.9, P=0.006) between CC vs. TT homozygote groups. In further analysis, the subjects with type 2 diabetes were excluded.

In cross-sectional data (year 2001), the TCF7L2 rs7903146 genotype at risk T-allele was significantly related with higher prevalence of IFG (P=0.046) and lower HOMA-B index (P=0.042). Fasting glucose, insulin, HOMA-IR, obesity indices, serum lipids, C-reactive protein, adiponectin and leptin did not differ across the genotypes.

There were 1,658 subjects with longitudinal data on fasting glucose that were normoglycemic in 1986 (glucose<5.6 mmol/L). Of these subjects 172 developed IFG during the follow-up. The relations of rs7903146 and rs12255372 genotypes on IFG incidence are shown in the Table. The adjusted odds ratios indicate that the homozygotes for T risk allele at both SNP’s had over double the risk of developing IFG compared to the homozygotes for more common CC or GG alleles. The population-attributable risk to develop IFG due to the rs7903146 at risk T-allele was 9.0%. None of the haplotypes provided stronger associations with incidence of IFG than either SNP’s alone.

CONCLUSION

We found that TCF7L2 variation predicts IFG incidence in a population of non-diabetic young adults. The mechanism by which the TCF7L2 gene is related to the risk of type 2 diabetes is unknown, but there is evidence indicating influence on insulin secretion. The gene product of TCF7L2 is a human T-cell transcription factor 4 that plays a role in the Wnt signaling pathway (25). T-cell transcription factor 4 regulates the transcription of proglucagon gene in enteroendocrine cells, the gene encoding the insulinotropic hormone glucagon-like peptide 1.
Glucagon-like peptide 1 has been demonstrated to exert effects on glucose homeostasis. It can lower glucose levels through the stimulation of insulin secretion and biosynthesis, and the inhibition of glucagon release and gastric emptying (26). Our finding that insulin secretion is decreased in carriers of the risk-conferring genotype lends indirect support to this hypothesis. Previous reports have shown that the carriers of the susceptibility variants increase the risk of type 2 diabetes by impairing insulin secretion(2,27,28).

The effect of TCF7L2 variation on hyperglycemia incidence has been previously studied in French general population in a 9-year prospective study(28), where the population-attributable risk to develop hyperglycemia due to the rs7903146 T-allele was 10.4%. In the present study, in a substantially younger population, the estimated population-attributable risk to develop hyperglycemia due to the rs7903146 T-allele was 9.0%.

TCF7L2 has been implicated as a member of the Wnt signaling pathway, which plays a role in regulating adipogenesis (29,30). Therefore, increased Wnt signaling in carriers of the TCF7L2 risk variants could potentially influence adipose tissue development. In general, previous studies have reported similar or lower levels of obesity in the carriers of the risk variants. In the present study, however, we were unable to demonstrate significant relations between TCF7L2 variation and obesity indices, serum lipids or adipokines, including leptin and adiponectin. Due to young age of the cohort, the number of subjects with type 2 diabetes was limited. However, even with these low numbers, we observed a statistically significant many fold increased risk of type 2 diabetes associated with rs7903146. This indicates that TCF7L2 variation may play an important role especially in cases of early onset of type 2 diabetes.

ACKNOWLEDGEMENTS

This study was supported by the Academy of Finland (grants 77841/210283), Social Insurance Institution of Finland, Turku University Foundation, Juho Vainio Foundation, Emil Aaltonen Foundation (T.L.), Finnish Foundation of Cardiovascular Research, and Finnish Cultural Foundation.
REFERENCES

27. Smith U: TCF7L2 and type 2 diabetes-we WNT to know. *Diabetologia* 2006

Table. Incidence of impaired fasting glucose, and odds ratios (OR) for the development of impaired fasting glucose during 15 year follow-up in 1,663 adolescents and young adults according to the TCF7L2 genotypes.

<table>
<thead>
<tr>
<th></th>
<th>Incidence</th>
<th>OR†</th>
<th>OR‡</th>
<th>OR§</th>
<th>OR¶</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(%)*</td>
<td>(95% CI)</td>
<td>(95% CI)</td>
<td>(95% CI)</td>
<td>(95% CI)</td>
</tr>
<tr>
<td>rs7903146</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CC N=1,102</td>
<td>9.4</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>CT N=502</td>
<td>12.0</td>
<td>1.4</td>
<td>1.4</td>
<td>1.3</td>
<td>1.4</td>
</tr>
<tr>
<td></td>
<td>(1.0-1.9)</td>
<td>(1.0-2.0)</td>
<td>(1.0-1.9)</td>
<td>(1.0-2.0)</td>
<td>(1.0-2.1)</td>
</tr>
<tr>
<td>TT N=54</td>
<td>14.8</td>
<td>2.1</td>
<td>2.2</td>
<td>2.1</td>
<td>2.3</td>
</tr>
<tr>
<td></td>
<td>(0.9-4.6)</td>
<td>(1.0-5.0)</td>
<td>(1.0-4.7)</td>
<td>(1.0-5.2)</td>
<td>(1.0-5.3)</td>
</tr>
<tr>
<td>rs12255372</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GG N=1,167</td>
<td>9.9</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>GT N=445</td>
<td>10.6</td>
<td>1.2</td>
<td>1.2</td>
<td>1.1</td>
<td>1.1</td>
</tr>
<tr>
<td></td>
<td>(0.8-1.7)</td>
<td>(0.8-1.7)</td>
<td>(0.8-1.7)</td>
<td>(0.8-1.6)</td>
<td>(0.8-1.6)</td>
</tr>
<tr>
<td>TT N=46</td>
<td>19.6</td>
<td>2.4</td>
<td>2.8</td>
<td>2.4</td>
<td>2.9</td>
</tr>
<tr>
<td></td>
<td>(1.1-5.2)</td>
<td>(1.3-6.2)</td>
<td>(1.1-5.3)</td>
<td>(1.3-6.4)</td>
<td>(1.3-6.6)</td>
</tr>
</tbody>
</table>

* unadjusted
† adjusted for age and sex.
‡ adjusted for age, sex, and waist circumference.
§ adjusted for age, sex, physical activity index.
¶ adjusted for age, sex, and insulin.
|| adjusted for age, sex, waist circumference, physical activity and insulin.