HDL composition predicts new-onset cardiovascular disease in patients with type 1 diabetes

Groop, P-H, MD DMSc1,2, Thomas MC, MBChB PhD3, Rosengård-Bärlund M, MD1,2, Mills V, BSc1,2, Rönnback M, MD1,2, Thomas S, PhD MRCP4, Forsblom C MD DMSc1,2, Taskinen M-R, MD DMSc1,2, Viberti GC MD, FRCP4

1Folkhälsan Institute of Genetics, Folkhälsan Research Center, Biomedicum Helsinki, PO Box 63, Haartmaninkatu 8, Helsinki, Finland.
2Divisions of Nephrology and Cardiology, Helsinki University Central Hospital, Helsinki, Finland.
3The Baker Heart Research Institute, PO Box 6492, St Kilda Road Central, Melbourne, Victoria, Australia.
4Cardiovascular Division, GKT School of Medicine, Guy's Hospital, King's College, London, United Kingdom

Address for correspondence:
Per-Henrik Groop
Folkhälsan Research Center
Biomedicum Helsinki
PoBox 63
FIN-00014 University of Helsinki
Finland
Email: per-henrik.groop@helsinki.fi

Received for publication 8 January 2007 and accepted in revised form 29 June 2007.

Additional information for this article can be found in an online appendix at http://care.diabetesjournals.org.
Introduction

Dyslipidemia is independently associated with cardiovascular disease (CVD) in type 1 diabetes (1,2). In this paper, we report the specific lipid abnormalities associated with new-onset CVD in an enriched cohort of patients with type 1 diabetes.

Materials and Methods

The study design and selection criteria have been previously described (3,4). Briefly, 153 patients with type 1 diabetes were recruited in the UK from the Diabetes Outpatient Clinics at Guy’s and King’s College Hospitals (n=75), and in Finland from the Helsinki University Central Hospital (n=78). Patients were recruited to represent differing degrees of urinary albumin excretion and matched for duration of diabetes and glycaemic control. Participants were then followed for a median of 8.8 years, during which time they received standard medical care, including lipid-lowering agents where indicated. Full methods of baseline examination have been published elsewhere (3-6). Briefly, clinical data was obtained from patient records including age, gender, diabetes onset, duration of diabetes, medication history, and the presence of microvascular complications. Lipids and lipid fractions were estimated in fasting samples and processed as previously described (3-6).

The study outcome was defined post-hoc by the occurrence of a fatal or non-fatal cardiovascular event, including coronary heart disease (myocardial infarction, coronary revascularization or angioplasty), cerebrovascular disease (stroke) or peripheral vascular disease (amputation associated with large vessel disease) based on clinical records.

Results

148 patients with type 1 diabetes were followed for a median of 8.8 years, during which time ten patients were lost to follow-up. A further patient died from malignancy and one committed suicide before the primary outcome had been determined. This left 136 patients in whom the presence of CVD over the follow-up period could be ascertained. The baseline clinical characteristics and lipid levels of patients from this cohort study have been previously described and are provided in on-line appendix tables (available at http://care.diabetesjournals.org).

During the study follow-up, 26 patients experienced a fatal or non-fatal cardiovascular event (19%), including 8 cardiovascular deaths, 7 patients experiencing myocardial infarction, 5 patients undergoing coronary revascularisation, 4 patients experiencing strokes and 8 patients undergoing amputation. The majority of patients experiencing new-onset CVD were male (77%, n=20/26), compared to 49% of those who remained free of CVD (n=54/110, p<0.01). Half of those experiencing new-onset CVD during the follow-up period were aged over 50 years (n=13/26), compared to 12% of those who remained free of CVD (n=14/110,
There was also strong association between diabetic kidney disease and the incidence of CVD (figure 1a). However, after adjusting for age, gender and kidney disease, new-onset CVD was also independently associated with the composition of HDL particle, such that diabetic individuals with a low ratio of HDL particles containing apo A-I but not apo A-II (Lp(A-I)) to those containing both apo A-I and apo A-II (Lp(A-I:A-II)) had an 4-fold increased risk of new-onset CVD (odds ratio 4.2; 95% CI 1.4 – 13.4). Moreover, this effect appeared to be additive to that of kidney disease (figure 1a). In addition, for the same level of HDL cholesterol, those individuals with lower Lp(A-I) when compared to Lp(A-I:A-II) had the worst outcome (figure 1b).

Discussion

CVD is the major threat to longevity in patients with type 1 diabetes. In our cohort, one in five patients with chronic diabetes but no previous history of cardiovascular disease, died or had a cardiovascular event in 8.8 years of follow-up. While some of this excess was attributable to kidney disease (7), dyslipidemia also had a significant and independent impact. Although HDL cholesterol levels are normal or even slightly elevated in type 1 diabetes (8), our study demonstrates that changes in composition of HDL particles are independently associated with cardiovascular risk.

While we performed a detailed analysis of lipid composition, and the observational follow-up was long, interpretation of study findings is limited by our small cohort size and number of new CVD cases, which may lead to type 1 error. However, by enriching the study cohort with patients with CKD (and therefore the greatest risk of adverse outcomes) we were able to observe sufficient events to perform multivariate analysis. The factors leading to changes in HDL composition in patients with type 1 diabetes may also partly confound their association with adverse cardiovascular outcomes. Diabetic kidney disease contributes to changes in HDL composition (9). While Lp(A-I) and the Lp(A-I):Lp(A-I:A-II) ratio were lowest in patients with macroalbuminuria, the impact of lipid changes on CVD was observed in all stages of diabetic kidney disease (figure 1a). Smoking, obesity and lipid-lowering drugs may also modify HDL composition, but in our study, new-onset CVD was not associated with these parameters. However, physical exercise, dietary habits, alcohol intake and menopausal status were not formally assessed and we cannot exclude that they may impact on both HDL composition and CVD.

Cholesterol efflux significantly contributes to the development and progression of cardiovascular disease in type 1 diabetes. A key mediator of cholesterol efflux is the HDL particle, of which there are two major populations in humans, Lp(A-I) and Lp(A-I:A-II) (10). The concentration of Lp(A-I) particles is known to be reduced in patients with coronary artery disease (11-13), paralleling reductions in cholesterol efflux capacity. In the present study, we show that a reduced concentration of Lp(A-I) particles is independently associated with the development of CVD in patients with type 1 diabetes.
Moreover, for the same level of HDL lower Lp(A-I) concentration when compared to Lp(A-I:A-II) had the worst outcome (figure 1b). These data further suggest that broadly increasing HDL cholesterol may not be sufficient to confer cardioprotection. In summary, CVD is common in patients with type 1 diabetes, even though HDL cholesterol levels are normal or elevated. However, changes in the composition of HDL particles are associated with new-onset CVD in type 1 diabetes, in a fashion independent of, and additive to, the stage of kidney disease, gender and age.
References

Figure 1. The incidence of CVD or death in patients with type 1 diabetes, stratified for the ratio of Lp(A-I) to Lp(A-I:A-II) particles (above and below the median value) and (a) the stage of nephropathy and (b) HDL cholesterol concentration. Number on bars denotes the raw number of events divided the number of patients in each group.

*p<0.05 above vs below the median ratio of Lp(A-I) to Lp(A-I:A-II) particles.
Figure 1.

A.

Albumin excretion rate (ug/min)

CVD (%) vs. Ratio <0.6 vs. Ratio >0.6

- Albumin excretion rate categories:
 - <20
 - 20-200
 - >200

- CVD (%): 4/23, 8/21, 9/17
- Ratio <0.6: 1/39, 2*/22
- Ratio >0.6: 2*/14

B.

HDL cholesterol (mmol/L)

CVD (%) vs. Ratio <0.6 vs. Ratio >0.6

- HDL cholesterol categories:
 - <1.2
 - 1.2-1.7
 - >1.7

- CVD (%): 8/15, 8/35, 5/11
- Ratio <0.6: 1*/9, 3*/32
- Ratio >0.6: 1*/34