Association between urinary albumin excretion and plasma-hydroxyindole-3-acetic acid concentration in men with type 2 diabetes

Michiaki Fukui, MD1, Hiroyuki Ose, MD1, Goji Hasegawa, MD1, Toshikazu Yoshikawa MD2, Naoto Nakamura, MD1

1Endocrinology and Metabolism, Kyoto Prefectural University, 465 Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan
2Inflammation and Immunology, Kyoto Prefectural University, Kyoto, Japan

Running title: Albuminuria and 5-HIAA in diabetic men

Correspondence:
Michiaki Fukui, MD, Endocrinology and Metabolism, Kyoto Prefectural University, 465 Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan
E-mail: sayarinapm@hotmail.com

Received for publication 28 February 2007 and accepted in revised form 22 June 2007.
Serotonin (5-hydroxytryptamine; 5-HT) mediates vasoconstriction and induces the activation of platelets, which may promote atherosclerosis. Plasma 5-HT concentration has been reported to be high in diabetic patients (1,2), which may be one of the underlying mechanisms of diabetic complications. 5-HT_{2A} receptor has been identified in glomerular mesangial cells (3), which suggests the involvement of 5-HT in the development of diabetic nephropathy through proliferation and matrix synthesis in mesangial lesions. Male gender is an independent risk factor for cardiovascular disease (4). Moreover, elevated urinary albumin excretion (UAE) has been reported to be associated with increased risk of cardiovascular mortality (5). Few studies have examined the association between plasma 5-HT concentration and atherosclerosis (6). To our knowledge, a relationship between plasma 5-HT concentration and degree of UAE has never been explored in men with type 2 diabetes. In this study, we evaluated the relationships between plasma 5-hydroxyindole-3-acetic acid (5-HIAA), a derivative end-product of 5-HT, concentration and degree of UAE as well as markers of subclinical atherosclerosis such as pulse wave velocity (PWV), ankle-brachial index (ABI), carotid intima-media thickness (IMT), or plaque score in men with type 2 diabetes.

RESEARCH DESIGN AND METHODS

The relationships of plasma 5-HIAA concentrations to degree of UAE and to major cardiovascular risk factors were investigated in 205 consecutive men with type 2 diabetes recruited from the outpatient clinic at the Kyoto Prefectural University of Medicine. Moreover, the relationships between plasma 5-HIAA concentration and PWV or ABI (n=160) and between plasma 5-HIAA concentration and IMT or plaque score (n=102) were investigated additionally in a subgroup of patients.

Plasma 5-HIAA concentrations (normal ranges: 1.8 to 6.1 ng/ml) were measured by high-performance liquid chromatography. The intra-assay coefficients of variation (CVs) were 2.1, 2.0, and 0.9% for plasma 5-HIAA concentrations of 25.27, 41.30, and 95.09 ng/ml, respectively. The interassay CVs were 3.9, 3.3, and 2.4% for plasma 5-HIAA concentrations of 7.45, 20.55, and 60.83 ng/ml, respectively. Urinary albumin excretion was measured with an immunoturbidimetric assay. A mean value for UAE was determined from three urine collections. Patients were excluded if they were taking any medications which might affect plasma 5-HIAA concentrations (e.g., 5-HT receptor blockers). Approval for the study was obtained from the local Research Ethics Committee, and informed consent was obtained from all participants.

Brachial-ankle (ba) PWV and ABI were measured using a Colin Waveform Analyzer (form PWV/ABI; Colin Medical Technology, Komaki, Japan)(7). B-mode ultrasonographic imaging of the carotid artery was performed as described previously (8). Because plasma 5-HIAA concentration and UAE showed skewed distributions, logarithmic (log) transformation of these values was carried out before performing correlation and regression analysis. The relationships between log (plasma 5-HIAA concentration) and log UAE, PWV, ABI, IMT, or plaque score as well as other variables including age or glycemic control were examined by Pearson’s correlation analyses. To examine the effects of various factors on log UAE, the following factors were considered as independent variables for multiple regression analysis: log (plasma 5-HIAA concentration), age,
duration of diabetes, BMI, HbA1c, systolic blood pressure, diastolic blood pressure, plasma total cholesterol, triglyceride, HDL-cholesterol concentrations and smoking status. All continuous variables are presented as the mean ± SD. A P value <0.05 was considered statistically significant.

RESULTS

Clinical characteristics of the 205 men with type 2 diabetes enrolled in this study are as follows: mean age, duration of diabetes, BMI, HbA1c, systolic blood pressure, plasma total cholesterol concentration, PWV, ABI, IMT, plaque score and plasma 5-HIAA concentration were 63.5±11.3 years, 13.6±11.8 years, 23.0±3.1 kg/m², 7.1±1.1 %, 132±15 mm Hg, 4.99±0.86 mmol/l, 1750±341 cm/s, 1.08±0.17, 0.90±0.22 mm, 3.8±4.2, and 7.4±6.6 ng/ml, respectively. Positive correlations were found between log (plasma 5-HIAA concentration) and age (r=0.358, P<0.0001), PWV (r=0.184, P=0.0243; Fig. 1A), IMT (r=0.397, P<0.0001; Fig. 1C), plaque score (r=0.317, P=0.0013; Fig. 1D) or log UAE (r=0.266, P=0.0001; Fig. 1E). An inverse correlation was found between log (plasma 5-HIAA concentration) and ABI (r=−0.200, P=0.0150; Fig. 1B). Multiple regression analysis demonstrated that log (plasma 5-HIAA concentration) (β=0.214, P=0.0049), duration of diabetes (β=0.196, P=0.0169), HbA1c (β=0.202, P=0.0115), and systolic blood pressure (β=0.306, P=0.0120) were independent determinants of log UAE.

CONCLUSIONS

The present study found positive correlations between log (plasma 5-HIAA concentration) and log UAE, PWV, IMT, or plaque score, and an inverse correlation between log (plasma 5-HIAA concentration) and ABI. Log (plasma 5-HIAA concentration) also correlated inversely with glomerular filtration rate (data not shown). 5-hydroxytryptamine induces the contraction, migration and proliferation of vascular smooth muscle cell (VSMC) via the 5-HT2A receptor followed by various intracellular signal transduction mechanisms (9-11). Watanabe et al. (12-14) demonstrated that 5-HT exerts a synergistic interaction with oxidized LDL, hydrogen peroxide, angiotensin II, endothelin-1, or monocyte chemoattractant protein 1 in inducing VSMC proliferation. These findings indicate that 5-HT contributes to deterioration of peripheral blood flow. Kasho et al. (15) demonstrated that 5-HT increased the production of type 4 collagen by cultured human mesangial cells through 5-HT2A receptor, which was mediated by activation of protein kinase C and subsequent increase in transforming growth factor-β activity. Currently, sarpogrelate hydrochloride, a potent 5-HT2A receptor antagonist that inhibits 5-HT-induced vasoconstriction and platelet aggregation (16), is used clinically as anti-platelet drugs for prevention of thrombosis in atherosclerotic disease. Takahashi et al. (17) reported that sarpogrelate hydrochloride reduced degree of UAE, indicating the potential usefulness of this agent for the protection of development and progression of diabetic nephropathy. Takahashi et al. (17) demonstrated that urinary 5-HIAA in diabetic patients was higher than that in normal subjects. Moreover, the vasoconstrictor response to 5-HT has been reported to be increased due to 5-HT receptor hypersensitivity in diabetic patients (2). To our knowledge, this is the first study that has examined the relationship between plasma 5-HIAA concentration and degree of UAE in men with type 2 diabetes. However, the cross-
The sectional nature of our study does not permit determination of causality. Large prospective trials and intervention studies are needed to better assess the effects of 5-HT on diabetic nephropathy and atherosclerosis in men with type 2 diabetes.

ACKNOWLEDGEMENTS
We thank Mr. Masao Shimotsuma for his technical assistance.
References

Figure legends

Fig. 1. Correlation between log [plasma 5-hydroxyindole-3-acetic acid (5-HIAA) concentration] and pulse wave velocity (PWV; A), ankle-brachial index (ABI; B), carotid intima-media thickness (IMT; C), plaque score (D), or log (urinary albumin excretion)(UAE; E) in men with type 2 diabetes.