Factors that Impact Symptomatic Diabetic Peripheral Neuropathy in Placebo-treated Patients from Two 1-year Clinical Trials

Solomon Tesfaye, MD, FRCP, Rup Tandan, MD, FRCP, Edward J. Bastyr III, MD, Keri A. Kles, PhD, Vladimir Skljarevski, MD, Karen L. Price, PhD, for the Ruboxistaurin Study Group*

1Diabetes Research Unit, Royal Hallamshire Hospital, Sheffield, United Kingdom; 2University of Vermont, College of Medicine, Burlington, Vermont; 3Lilly Research Laboratories, Indianapolis, Indiana; 4Indiana University, Indianapolis, Indiana

Running title: Symptoms of Diabetic Peripheral Neuropathy

Address correspondence to:
Professor Solomon Tesfaye
Royal Hallamshire Hospital
Q Floor, Room 26
Glossop Road
Sheffield S102JF UNITED KINGDOM
E-Mail: solomon.tesfaye@sth.nhs.uk

Disclosure: This study was funded by Eli Lilly & Company

Received for publication 27 March 2007 and accepted in revised form 28 June 2007.

*See Appendix for complete list of the Ruboxistaurin Study Group.
ABSTRACT

Objective: To evaluate the change in neuropathy symptoms and disease progression in placebo-treated patients from two 1-year studies that tested the impact of ruboxistaurin (RBX) in mild diabetic peripheral neuropathy (DPN).

Research Design and Methods: Data from 262 placebo-treated patients from two identical phase 3, randomized, double-blind trials were combined and analyzed.

Results: After 1 year, change in Neuropathy Impairment Score of Lower Limbs (NIS[LL]; -0.63 points; p = 0.005), vibration detection threshold (VDT, -0.42 JND Units; p = 0.003) and Neuropathy Total Symptom Score-6 (NTSS-6, -3.73 points; p < 0.001) improved while some electrophysiology measures and Heart Rate Deep Breathing (HRDB - 0.78 beats; p = 0.003) worsened when compared with baseline values. There was a small but significant worsening of A1C (0.28%; p < 0.001) and a greater percentage of patients were using analgesics at the end of the trials (33.6%; p = 0.003). At 1 year, the change in NTSS-6 directly correlated with changes in NIS(LL) and VDT, and inversely correlated with the peroneal nerve conduction velocity. On logistic regression analyses, a > 50% reduction in NTSS-6 score was less likely in patients that used anti-hypertensive or chronic symptom medication at baseline.

Conclusions: In placebo-treated patients with mild symptomatic DPN: 1) there was a progressive improvement in symptoms over 12 months whilst nerve conduction studies and HRDB declined; 2) clinically significant worsening of DPN would require greater than 1 year of observation.
In the Rochester Diabetic Neuropathy Study cohort, the prevalence of diabetic peripheral neuropathy (DPN) was 54% in patients with type 1 diabetes mellitus and 45% in patients with type 2 diabetes mellitus (1). The two main clinical consequences of DPN, painful neuropathy and foot ulceration (sometimes leading to amputation), are associated with much patient morbidity and mortality (2). It is well established that lack of glycemic control and a longer duration of diabetes are major risk factors for the development of DPN (3,4). In addition, a major European prospective study has recently shown that potentially modifiable, traditional markers of macrovascular disease such as hypertension, hyperlipidemia and smoking are also independent risk factors for DPN (5).

The most consistent early abnormality in DPN is an abnormality in nerve electrophysiology. Clinical signs resulting from nerve dysfunction may include loss of light touch and pressure sensation, a decrease in vibration detection threshold (VDT), decreased motor strength, and areflexia. Symptoms may or may not develop with the onset of functional abnormalities or mild clinical impairments and are therefore not essential for the diagnosis of DPN. However, it is well recognized that pain is the most distressing symptom of DPN and the main factor that prompts the patient to seek medical advice (6). There are few studies that have examined the prevalence and progression of painful DPN and they report a prevalence rate ranging from 7-26% (7-8). The variation in prevalence reporting reflects the heterogeneity of the population studied, the criteria used to define symptomatic neuropathy, and the changes in the standard of care or alternatively the degree of DPN symptoms or use of concomitant therapy in that patient population.

Virtually all clinical trials involving pain relieving drugs have been short term and solely evaluated changes in the symptoms of DPN without carefully assessing neuropathy parameters. Thus, information regarding symptomatic improvement in relation to underlying disease state progression over an extended period of time is lacking. We present data from the placebo-treated patients from two large, randomized, double-blind, identical, 12-month clinical trials in order to investigate which factors may impact not only the disease-state progression but also the change in symptoms in patients with mild but clinically symptomatic DPN.

RESEARCH DESIGN AND METHODS

Two identical, phase 3, parallel, randomized, double-blind, placebo-controlled trials (MBBP and MBCW) were performed at 64 centers (see appendix for complete list of investigators), investigating the effects of 32 mg/day of the protein kinase C β inhibitor, ruboxistaurin (RBX) mesylate compared to placebo in patients with diabetes mellitus and symptomatic DPN. The studies were conducted according to the principles expressed in the Declaration of Helsinki.

Patients studied were 18 years or older with type 1 or type 2 diabetes mellitus who had clinically diagnosed sensory symptoms due to distal symmetrical polyneuropathy. Patients needed to have mild DPN, which included a VDT $\geq 95^{th}$ percentile, a sural sensory nerve action potential (SNAP) ≥ 1 µV, and a baseline
neuropathy total symptom score-6 (NTSS-6)>6 points. Patients who had a VDT>23 just noticeable difference (JND) units, a hemoglobin A1c (A1C) value of >12.0%, or neuropathy due to diseases other than diabetes mellitus, were excluded. Assessments included the NTSS-6, VDT, Neuropathy Impairment Score of the Lower Limbs (NIS[LL]), heart rate variation during deep breathing (HRDB), and electrophysiology measured by nerve conduction studies.

Measurements

To evaluate symptoms of DPN, the NTSS-6 was utilized to measure frequency and intensity of neuropathic sensory symptoms (numbness and/or insensitivity, prickling sensation, aching pain, burning pain, lancinating pain, allodynia and/or hyperalgesia) (9-10). Surface stimulation and recordings of nerve conduction were obtained from the sural, peroneal and tibial nerves of the lower extremity. Conduction velocities were calculated from these measurements using standard methods (11). In addition, the study limb was tested for vibratory perceptions over a 30-minute period. A noninvasive detector was placed at predetermined skin locations and ‘4-2-1 stepping’ algorithm was followed and the reading center conducted quality control assessments prior to data capture (12).

Concomitant Medication Use

All concomitant medication use was recorded on the case report form. Analgesics were permitted and medications taken for DPN symptoms were separately noted. Chronic symptom medications were defined as medications that are typically prescribed for the treatment of DPN symptoms on an ongoing basis (>1 month). These drugs include anticonvulsants and antidepressants; some examples include gabapentin, topiramate, amitriptyline, duloxetine, and nortriptyline. Patients who required medication to relieve DPN symptoms were prescribed analgesic medications according to the following algorithm: Week 1: aspirin, acetaminophen, paracetamol, or aspirin-like compounds; Weeks 2 through 4 (if needed and indicated): nonsteroidal anti-inflammatory medication; Weeks 5 through 8 (if needed and indicated): Class 4 controlled substances such as propoxyphene or propoxyphene combined with another analgesic such as aspirin or acetaminophen; Week 9 and beyond (if needed and indicated): codeine or codeine combined with another analgesic such as aspirin or acetaminophen. If Class 2 controlled substances were required (with the exception of codeine), then the patient was discontinued from the study medication.

Patients were required to have stable glucose control prior to entering the study. Patients with an A1C between 9% and 12% at screening were required to lower their A1C before entering the study by use of insulin or other measures (diet and exercise with or without oral antihyperglycemic agents). Patients with an A1C >12% were excluded from the study. The patient’s antihyperglycemia therapy could have been altered at any time during the trial in accordance with good clinical practice and the local standards of diabetes care.

Analyses and Statistical Methods

Analyses were conducted using the intent-to-treat population, which includes all randomized patients. For patients missing post-baseline measurements, the last observation carried forward (LOCF) approach was applied by imputing the last
non-missing post-baseline value. Pearson’s correlation coefficient was used to evaluate the disease progression within the placebo-treated patients by correlating the change in sensory symptoms (as measured by the NTSS-6) with the change in NIS[LL], VDT, or electrophysiological measures. Change from baseline to endpoint in medication use at baseline as compared to post-baseline were also investigated.

Stepwise logistic regression was then conducted with the following patient characteristics included in the model: age, A1C, gender, origin (Caucasian vs non-Caucasian), diabetes type, alcohol use, tobacco use, body mass index, blood pressure assessments, insulin use, and baseline measures of neuropathy. In addition, the use of the following medications was included: statins, antihypertensives, ACE/ARB, and chronic symptom medications. In all stepwise logistic regression models, the probability level to enter the model was set to 0.3 and the probability to remain in the model was set to 0.1. The first stepwise logistic regression included the above factors; in addition protocol (MBBP vs MBCW) was forced into the model as a factor. The second analysis was conducted in the same manner, but also forced age and baseline A1C into the model, as these are known predictors of diabetic neuropathy disease state progression (3,4). The goal of these analyses was to assess the likelihood of a clinically significant symptom improvement while adjusting for all characteristics together.

RESULTS

Of the 519 patients randomized at 64 centers, 262 received placebo and 211 of the placebo-treated patients completed the 1-year study (see appendix for patient disposition diagram). Baseline characteristics of the placebo group patients are presented in Table 1. Significant symptom improvement within each treatment group was demonstrated as early as 1 month and this was observed throughout the course of one year (p<0.001 in the placebo and p<0.001 in the RBX groups). The combined data for the primary endpoint from these two clinical trials indicated that there was no significant difference between RBX- and placebo-treated groups for the NTSS-6 change at any point during the 1-year trials.

At baseline, placebo-treatment patients had a mean NTSS-6 total score of 9.76±3.3 points (mean ± standard deviation); NIS [LL] score of 6.95±5.0 points; and VDT results of 20.43±2.1 JND units. The change from baseline to endpoint exhibited a statistically significant mean improvement for each of the following parameters (Table 2): the NTSS-6 total score (3.73±3.8; p<0.001), the NIS [LL] (0.63±3.4 points; p=0.005), and the VDT (0.42±2.1 JND units; p=0.003). In contrast, the HRDB difference (inspiration – expiration at baseline = 11.9±6.7 beats/minute) had a statistically significant mean worsening (0.78±3.9 beats/minute; p=0.003) from baseline to the end of the 1-year study evaluation (Table 2).

Most electrophysiology attributes numerically worsened over the 1-year study period. A statistically significant worsening was observed for peroneal motor nerve conduction velocity (NCV), tibial motor nerve F-wave latency, sural sensory nerve amplitude and sural sensory peak latency (Table 2).

Although the change was small, a significant mean increase in baseline to endpoint A1C was observed (0.28%±1.2,
Symptoms of Diabetic Peripheral Neuropathy

The percentage of patients using insulin at baseline and at the end of the study was comparable (60.7% versus 62.2%, \(p=0.720 \)), while the use of statins slightly increased from 26.3% at baseline to 31.7% at the end of the study (\(p=0.178 \)). However, the use of analgesic medications did significantly increase in the placebo-treated patients from 21.8% at baseline to 33.6% by the end of the study (\(p=0.003 \)). Regardless of analgesic medication use, whether never taken, taken at baseline or initiated during the trial, there was a similar degree of improvement in the mean change from baseline in the NTSS-6 score for placebo-treated patients.

A change in sensory symptoms as measured by the NTSS-6 significantly correlated with change in VDT (\(r=0.169, p=0.010 \)); NIS (LL) (\(r=0.166, p=0.010 \)); and peroneal NCV (\(r=-0.213, p=0.001 \)), although the correlations were mild. No consistent correlation was observed between change in symptoms and change in other electrophysiological measures in placebo-treated patients. In addition, no statistically significant correlation between change from baseline in each of the individual NTSS-6 symptoms and change from baseline in measures of neuropathy was observed.

As shown in Table 3, when the patient characteristics were assessed in a univariate fashion, a clinically significant (\(\geq 50\% \)) reduction in NTSS-6 score was less likely in patients that used anti-hypertensive (65.2% vs 52.8%; \(p=0.0464 \)) or chronic symptom medication (18.7% vs 8.5%; \(p=0.0248 \)) at baseline. A similar trend was observed with the use of statins at baseline (30.3% vs 19.8%; \(p=0.0591 \)). Patients that had clinically significant improvement in neuropathy symptoms at 1 year had lower mean baseline score for NTSS-6, milder neuropathy (eg, lower VDT, lower NIS[LL], higher sural sensory amplitude, peroneal NCV, tibial F-wave latency), lower BMI, type 1 diabetes, lower systolic blood pressure and were younger. Additionally, there was a significant difference in the change in peroneal NCV between patients that had clinically significant improvement in neuropathy symptoms compared to those patients that did not (Table 3).

The results from the stepwise logistic regression analysis to assess the impact of patient characteristics on change in symptoms at 1 year are presented. Patients who used anti-hypertensive (\(p=0.025 \)) and chronic symptom medications (\(p=0.01 \)) at baseline and had a higher VDT (\(p=0.013 \)) at baseline were less likely to improve in symptoms. When the stepwise logistic regression analysis was performed with A1C and age in the model (results not shown), patients who used anti-hypertensive medications and chronic symptom medications at baseline were less likely to have symptom improvement. In addition, those with a higher body mass index and, as anticipated since age and A1C were forced into the model, older patients and those with a higher A1C at baseline were less likely to improve.

CONCLUSIONS

Accompanying the change in the standard of care, there has been a decrease in the incidence, prevalence and progression of diabetic microvascular complications (10,13-15). However, the impact of improved care on neuropathy symptoms is unclear (10,13-15). It has also been conventionally assumed that the placebo effect on pain relief would be short-lived, lasting only 3-6 months. This
has not been confirmed by long-term, randomized, controlled trials. Therefore longer, randomized controlled trials are clearly important as virtually all previous symptom-based trials have lasted less than 16 weeks and information is lacking on the continued efficacy of drugs currently in use for painful DPN. This analysis addresses the evolution of neuropathy symptoms in placebo-treated patients with mild DPN over 1 year. The findings of this study may be relevant for designing future longer-term studies. In addition, the natural history and progression of the symptoms of DPN in relation to the underlying neuropathy is poorly understood (13), an issue that is also addressed by this study.

In the patients that we studied, described as having mild DPN, we demonstrated variable progression of signs and symptoms. During the 1-year time course, there was statistically and clinically significant improvement in symptoms, signs (on neurological examination) and sensory testing of vibration, while HRDB, a marker of autonomic neuropathy and small nerve fiber function, actually worsened. It is commonly believed that autonomic and sensory neuropathies are progressive complications of diabetes. We observed worsening autonomic function, (HRDB), while sensory function (VDT), improved. This may be due to a differential effect on large fiber sensation versus small fiber function. Additionally, electrophysiology was uniformly and numerically worse after 1 year but peroneal NCV, tibial F-wave latency, sural peak latency and sural sensory amplitude were the only attributes to demonstrate a statistically significant worsening.

In contrast to positive results observed in the phase 2 trial investigating the effect of RBX in patients with DPN (16), the change in the NTSS-6 score was not statistically significant when comparing RBX and placebo groups in the two phase 3 studies (17). However, the change in symptoms from baseline to endpoint after this one year period was statistically significant in this patient population with mild DPN, regardless of treatment group. What could have impacted symptom improvement in this study? Possibilities including the psychological effects of frequent study required visits (18), a placebo effect (19), change in the diabetic and neuropathic disease states, glucose control, and use of symptom medication were considered. The improvement in symptoms as well as in the neurological examination score and VDT was unexpected since the patients were on a stable regimen (both diabetic medications and symptom medications) prior to the study and symptoms had been present for at least 6 months and as long as 5 years prior to enrollment. Although there was a slight increase in A1C at 1 year, this change could not be expected to greatly affect the clinical course. Thus, the most plausible explanation for the significant improvement in symptoms in the placebo-treated patients is likely to be the “placebo effect”. The “placebo effect” would include the psychological effect of taking the medication as well as more frequent interactions with a team of researchers interested in their well-being, thereby increasing the expectation of improvement. The “placebo-effect” is unlikely to be explained by the increase in analgesic medication use from baseline to endpoint as placebo-treated patients that never received medications for symptoms of DPN during the trial had also had a similar degree of
improvement in the mean change from baseline in the NTSS-6 score. It is interesting that not only was the improvement in symptoms significant and progressive, but it appeared to be increasing over the 1-year time period.

Alternatively, other factors may have influenced change or improvement of symptoms in the patient population. We chose a \(\geq 50\% \) improvement as a clinically meaningful change (20). We used logistic regression analysis which identified the patients with antihypertensive and chronic symptom medication use at baseline and worse VDT were less likely to have symptom improvement. Additionally, milder symptoms and milder disease state at baseline, as defined by a composite score of nerve function, VDT, peroneal NCV change from baseline or baseline sural sensory amplitude was identified as important. Finally, younger age, lower BMI and lower blood pressure were associated with symptom improvement.

Similar to our previous study, and distinct from the literature in this patient population, symptoms appeared to correlate positively with the neurological examination and vibration, and inversely with the worsening of electrophysiological measures, such as peroneal nerve conduction velocity. Although this may support previous assertions that symptoms are unreliable in assessing neuropathy disease state progression, it also brings into question the value of other measures of neuropathic change, such as the neurological examination.

The neurological examination, which may or may not include a quantitative evaluation of sensation, has long been considered the gold standard by neurologists in making the diagnosis of DPN. The examination has subjective components which are not always amenable to describe the presence of neuropathy or disease state progression in a strictly quantifiable manner. Moreover, it is well known that muscle strength (a prominent part of the neurological examination) cannot be fully evaluated and quantified when pain is present. Thus, the use of quantitative evaluation for the neurological examination may not accurately predict the presence or degree of neuropathy when painful symptoms are present. The recent consensus report advocating the use of the clinical examination as an important endpoint in defining the presence of neuropathy for clinical research purposes may be questionable (21).

Finally, in contrast to symptoms and signs, electrophysiological parameters consistently demonstrated worsening during the course of a 1-year period. Peroneal nerve conduction velocity, tibial F-wave latency, sural peak latency and sural sensory amplitude were the only tests of nerve function to demonstrate a statistically significant worsening although the remaining attributes were numerically worse. These measures are relatively objective with less variability and would thus be suitable endpoints for disease state progression in clinical trials (22). Clearly, several years of follow up would be required for any clinically meaningful change even in electrophysiological measures.

This study has some limitations. These clinical trials were only 1 year studies, which may not have been long enough to observe changes in the disease state progression. Additionally, the trials screened approximately 8500 patients for evidence of mild DPN with loss of
vibration sensation. Enrollment into the study was limited to patients with mild DPN. Hence patients with severe symptoms and more advanced DPN were not enrolled into the trials. For this reason, only 1 of 7 patients identified as having any severity of DPN qualified for the study. Therefore, these patients may not be representative of all symptomatic DPN patients. Finally, the closer contact in a clinical trial setting may allow for a better patient care and glucose control resulting in a reduction of disease state progression.

In conclusion, in patients with mild symptomatic DPN followed closely in a clinical trial, there was a significant and progressive improvement in symptoms over a 12-month period attributable to the “placebo effect”. Intervention with RBX during this one year period did not significantly alter symptom or disease state progression. The NIS(LL) and VDT improved from baseline to endpoint while the more objective measures, including most electrophysiology attributes and the autonomic nerve function (HRDB), worsened over the course of 1 year. Finally, clinically significant worsening of DPN in placebo-treated patients in a clinical study would require greater than 1 year of observation.

ACKNOWLEDGMENTS
Data presented at AAN (2006); ADA (2006); Neurodiab (2005 and 2006); EASD (2005). The authors thank the participants of the clinical trials and physicians from all the study sites. The authors acknowledge the support of April Boney of AJB Medical Writing Services. The Neuropathy Total Symptom Score–6© is a copyrighted questionnaire, copyright © 1999 by Eli Lilly and Company.
REFERENCES

APPENDIX

The DPN Study Group: Principal Investigators and Sites

Stephen Aronoff, MD, Research Institute of Dallas, Dallas, TX, USA
Joseph C. Arezzo, PhD, Albert Einstein College of Medicine, Bronx, NY, USA
Katrin Antsov, MD, Parnu Hospital, Parnu, Estonia
Stjepan Balic, MD, University of Zagreb, Croatia
Ante Barada, MD, University of Zagreb, Croatia
André Bélanger, MD, Laval Clinical Research Center, Laval, Québec, Canada
Timothy Benstead, MD, Centre for Clinical Research, Nova Scotia, Canada
Richard Bergenstal, MD, International Diabetes Center, MN, USA
Jürgen Beyer, MD, Johannes Gutenberg University, Mainz, Germany
Said Beydoun, MD, USC University Hospital, CA, USA
Robert Biesbroeck, MD, Valley Endocrine Associate, AZ, USA
Rupam Borgohain, MD, Nizam Institute of Medical Sciences, Hyderabad, India
Thomas Brannagan, MD, Weill Medical College of Cornell University, NY, USA
Vera Bril, MD, University of Toronto, Canada
Jose Cabezas Cerrato, MD, Hospital Clinico Universitario de Santiago, Santiago de Compostela, Spain
Alfred Chachati, MD, Centre Hospitalier Hutois, Huy, Belgium
Bruce Cleeremans, MD, NervePro Research, CA, USA
Stephen Colagiuri, MD, Diabetes Centre Prince of Wales Hospital, Randwick, Australia
David Coppini, MD, Poole General Hospital, Poole, UK
Paresh Dandona, MD, Diabetes & Endocrinology Center of WNY, NY, USA
Latha Dulipsingh, MD, New Britain General Hospital, CT, USA
Peter Dyck, MD, Mayo Clinic, Rochester, MN, USA
Pertti Ebeling, MD, Helsinki University Central Hospital, Helsinki, Finland
Milda Endziniene, MD, PhD, Kaunas Medical University Hospital, Kaunas, Lithuania
Samuel Engel, MD, Soundview Research Associate, CT, USA
Thomas Forst, MD, IKFE, Mainz, Germany
Roy Freeman, MD, Beth Israel Deaconess Medical Center, MA, USA
Greg Fulcher, MD, Royal North Shore Hospital, St. Leonards, Australia
Gillian Gibson, MD, Vancouver General Hospital, BC, Canada
Martin Gibson, MD, Hope Hospital, Salford, UK
Steven Glyman, MD, Nevada Neurological Consultants, NV, USA
Vesna Goldoni, MD, University of Zagreb, Croatia
Robert Hoeldtke, MD, West Virginia University, WV, USA
Reginald Hutchings, MD, Riverside Medical Centre, PEI, Canada
Lissette Jimenez, MD, San Juan, Puerto Rico
Eddy Karnielli, MD, Rambam Medical Center, Haifa, Israel
Gintaras Kaubrys, MD, PhD, Vilnius University Hospital, Santariskiu Clinic, Vilnius, Lithuania
Peter Kempler, MD, PhD, Semmelweis University, Budapest, Hungary
John Kincaid, MD, Indiana University, IN, USA
Peter Kovacs, MD, Medical University of Debrecen, Debrecen, Hungary
Table 1. Patient Baseline Characteristics

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Placebo (n = 262)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Female, n (%)</td>
<td>147 (56.1)</td>
</tr>
<tr>
<td>Type 1 Diabetes, n (%)</td>
<td>68 (26.0)</td>
</tr>
<tr>
<td>Age, (years)*</td>
<td>48.1 ± 9.4</td>
</tr>
<tr>
<td>Caucasian, n (%)</td>
<td>207 (79.0)</td>
</tr>
<tr>
<td>Body Mass Index, (kg/m²)*</td>
<td>30.0 ± 6.5</td>
</tr>
<tr>
<td>Hemoglobin A₁c., (%)*</td>
<td>7.6 ± 1.4</td>
</tr>
<tr>
<td>Used Insulin, n (%)</td>
<td>159 (60.7)</td>
</tr>
<tr>
<td>Duration of Diabetes, (yrs)*</td>
<td>11.4 ± 9.2</td>
</tr>
<tr>
<td>Duration of neuropathy, (yrs)*</td>
<td>2.7 ± 2.8</td>
</tr>
<tr>
<td>Statin Medication Use, n (%)</td>
<td>68 (26.0)</td>
</tr>
<tr>
<td>Chronic Symptom Medication Use, n (%)</td>
<td>38 (14.5)</td>
</tr>
<tr>
<td>Antihypertensive Medication Use</td>
<td>157 (59.9)</td>
</tr>
<tr>
<td>ACE Inhibitor or ARB Use, n (%)</td>
<td>131 (50.0)</td>
</tr>
</tbody>
</table>

*Mean ± Standard deviation

Abbreviations: ACE=angiotensin-converting enzyme; ARB=angiotensin II receptor blocker
Table 2. Baseline to Endpoint Change at 1 Year in Placebo-Treated Patients

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Baseline</th>
<th>Baseline to Endpoint Improvement</th>
<th>P value*</th>
</tr>
</thead>
<tbody>
<tr>
<td>NTSS-6 Total Score (points)</td>
<td>9.76 ± 3.3</td>
<td>3.73 ± 3.8</td>
<td>$P < 0.001$</td>
</tr>
<tr>
<td>NIS (LL) (points)</td>
<td>6.95 ± 5.0</td>
<td>0.63 ± 3.4</td>
<td>$P = 0.005$</td>
</tr>
<tr>
<td>Quantitative Sensory Testing (JND units)</td>
<td>20.43 ± 2.1</td>
<td>0.42 ± 2.1</td>
<td>$P = 0.003$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Baseline</th>
<th>Baseline to Endpoint Worsening</th>
<th>P value*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heart Rate Deep Breathing Difference – (beats/minute) (Inspiration – Expiration)</td>
<td>11.92 ± 6.7</td>
<td>0.78 ± 3.9</td>
<td>$P = 0.003$</td>
</tr>
<tr>
<td>Peroneal NCV (m/sec)</td>
<td>43.05 ± 4.9</td>
<td>0.38 ± 2.2</td>
<td>$P = 0.012$</td>
</tr>
<tr>
<td>Tibial F-wave Latency (msec)</td>
<td>54.93 ± 6.1</td>
<td>0.33 ± 2.4</td>
<td>$P = 0.045$</td>
</tr>
<tr>
<td>Sural Amplitude (μV)</td>
<td>9.10 ± 5.3</td>
<td>1.12 ± 3.7</td>
<td>$P < 0.001$</td>
</tr>
<tr>
<td>Sural Peak Latency (msec)</td>
<td>3.95 ± 0.49</td>
<td>0.058 ± 0.37</td>
<td>$P = 0.021$</td>
</tr>
<tr>
<td>Hemoglobin A$_{1c}$ (%)</td>
<td>7.58 ± 1.4</td>
<td>0.28 ± 1.2</td>
<td>$P < 0.001$</td>
</tr>
</tbody>
</table>

P values assess within placebo treatment baseline to endpoint change

Data Mean ± Standard Deviation

In order to assess disease progression within the placebo-treated patients, changes from baseline to endpoint were assessed using a t-test for the following neuropathy measures: NTSS-6 total score, NIS[LL] score, VDT, the HRDB (heart rate difference between inspiration and expiration), and attributes of electrophysiology (sural, peroneal and tibial nerves). Change from baseline to endpoint in A1C was also investigated.

Abbreviations: m/sec = meters per second; msec = milliseconds, NCV=nerve conduction velocity; NTSS-6=neuropathy total symptom score -6; NIS(LL)=neuropathy impairment score of the lower limbs; JND=just noticeable difference; μV= microvolts
Table 3. Patient Characteristics that Impact Clinically Significant Improvement in Neuropathic Symptoms*

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Symptom Improvement ≥50%</th>
<th>No Symptom Improvement <50%</th>
<th>P value†</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline NTSS-6 Total Score (points)</td>
<td>9.17 ± 2.87</td>
<td>10.19 ± 3.58</td>
<td>0.0168</td>
</tr>
<tr>
<td>Baseline NIS(LL) (points)</td>
<td>6.45 ± 4.25</td>
<td>7.31 ± 5.41</td>
<td>0.1714</td>
</tr>
<tr>
<td>NIS(LL) Changes from Baseline (points)</td>
<td>-1.21 ± 3.37</td>
<td>-0.21 ± 3.41</td>
<td>0.0277</td>
</tr>
<tr>
<td>Baseline NIS(LL)+7 (points)</td>
<td>13.28 ± 5.99</td>
<td>15.26 ± 7.17</td>
<td>0.0219</td>
</tr>
<tr>
<td>NIS(LL)+7 Change from Baseline (points)</td>
<td>0.027 ± 7.7</td>
<td>2.51 ± 12.7</td>
<td>0.0969</td>
</tr>
<tr>
<td>Baseline Vibration Detection Threshold (VDT; JND Units)</td>
<td>20.00 ± 2.06</td>
<td>20.71 ± 2.07</td>
<td>0.0087</td>
</tr>
<tr>
<td>VDT Change from Baseline (JND Units)</td>
<td>-0.582 ± 2.39</td>
<td>-0.304 ± 1.87</td>
<td>0.3228</td>
</tr>
<tr>
<td>Baseline Peroneal NCV (m/sec)</td>
<td>43.34 ± 4.96</td>
<td>42.85 ± 4.90</td>
<td>0.4273</td>
</tr>
<tr>
<td>Peroneal NCV Change from Baseline (m/sec)</td>
<td>0.015 ± 2.32</td>
<td>-0.674 ± 2.15</td>
<td>0.0260</td>
</tr>
<tr>
<td>Baseline Tibial F-wave Latency (msec)</td>
<td>54.54 ± 6.19</td>
<td>55.20 ± 6.06</td>
<td>0.3939</td>
</tr>
<tr>
<td>Tibial F-wave Latency Change from Baseline (msec)</td>
<td>0.285 ± 2.66</td>
<td>0.362 ± 2.21</td>
<td>0.8165</td>
</tr>
<tr>
<td>Baseline Sural Amplitude (µV)</td>
<td>10.19 ± 5.44</td>
<td>8.34 ± 5.13</td>
<td>0.0076</td>
</tr>
<tr>
<td>Sural Amplitude Change from Baseline (µV)</td>
<td>-1.23 ± 3.55</td>
<td>-1.04 ± 3.76</td>
<td>0.6985</td>
</tr>
<tr>
<td>Age (years)</td>
<td>46.30 ± 9.15</td>
<td>49.28 ± 9.36</td>
<td>0.0128</td>
</tr>
<tr>
<td>Baseline BMI (mg/kg2)</td>
<td>29.07 ± 7.14</td>
<td>30.67 ± 5.95</td>
<td>0.0528</td>
</tr>
<tr>
<td>Baseline SBP (mmHg)</td>
<td>124.22 ± 14.21</td>
<td>128.26 ± 15.68</td>
<td>0.0361</td>
</tr>
<tr>
<td>Type 1 Diabetes</td>
<td>33 (31.1)</td>
<td>34 (21.9)</td>
<td>0.0962</td>
</tr>
<tr>
<td>Baseline Chronic Symptom Medication Use</td>
<td>9 (8.5)</td>
<td>29 (18.7)</td>
<td>0.0248</td>
</tr>
<tr>
<td>Baseline Antihypertensive Medication Use</td>
<td>56 (52.8)</td>
<td>101 (65.2)</td>
<td>0.0464</td>
</tr>
<tr>
<td>Baseline Statin Use</td>
<td>21 (19.8)</td>
<td>47 (30.3)</td>
<td>0.0591</td>
</tr>
</tbody>
</table>

*A patient was considered to have a clinically significant symptom improvement if the patient had at least a 50% reduction from baseline in the NTSS-6 total symptom score.

† P-value calculated using a logistic regression analysis, with the categorical outcome (symptom improvement versus no symptom improvement) as the dependent variable and the characteristic (eg, age) as the independent variable.

The patient characteristics that may predict clinically significant symptom improvement were also investigated. For these analyses, a patient was considered to have a clinically significant symptom improvement if at least a 50% reduction in the NTSS-6 total symptom score was observed from baseline to end of study. Each patient characteristic was initially evaluated using a univariate logistic regression model, with clinically significant improvement status as the dependent variable and the patient characteristic as the independent variable.

Abbreviations: ACE=angiotensin-converting enzyme; ARB=angiotensin receptor blocker; BMI=body mass index; DBP=diastolic blood pressure; HbA1c=hemoglobin A1c; JND=just noticeable difference; m/sec=meters per second; msec = milliseconds; NCV= nerve conduction velocity; NIS(LL)=neuropathy impairment score (lower limbs); NTSS-6= Neuropathy total symptom score-6; SBP=systolic blood pressure; µV=microvolts