DOSE-RESPONSE RELATIONSHIP OF INSULIN GLULISINE IN SUBJECTS WITH TYPE 1 DIABETES

REINHARD H.A. BECKER MD¹, ANNKE D. FRICK PhD¹, LESZEK NOSEK MD², LUTZ HEINEMANN PhD², KLAUS RAVE MD²

¹sanofi-aventis, Frankfurt/Main, Germany; ²Profil Institute for Metabolic Research, Neuss, Germany

Running title: Insulin glulisine dose-response in type 1 diabetes

Correspondence:
Reinhard Becker MD
sanofi-aventis
Building H831, Room C 0441
Frankfurt, Germany
Email: reinhard.becker@sanofi-aventis.com

ClinicalTrials.gov Identifier: NCT00368394

Received for publication 12 October 2007 and accepted in revised form 28 June 2007.
INTRODUCTION
Rapidly absorbed and acting insulin analogs are increasingly being used to improve postprandial metabolic control (1), which may help in reducing cardiovascular-related and all-cause mortality in patients who already have good metabolic control (HbA₁c <8%) (2). Insulin glulisine is a new insulin analog (3) and, unlike other insulin analog products, is formulated without added zinc to achieve sufficient physical shelf-life (4). This unique formulation allows the immediate availability of monomeric and dimeric insulin glulisine molecules after injection, which is key to rapid absorption into the blood stream from subcutaneous tissue (5). Pharmacokinetic, pharmacodynamic and safety studies of insulin glulisine in healthy volunteers and patients with diabetes have shown that subcutaneous injection of insulin glulisine more closely mimics physiologic postprandial insulin action compared with regular human insulin (RHI) (6). Indeed, superior metabolic control was achieved with insulin glulisine as compared with RHI in subjects with type 1 diabetes on effectively titrated basal insulin regimens (7). However, despite the increasing use of rapid-acting insulin analogs, surprisingly little is known about dose escalation on systemic insulin concentrations and metabolic activity in subjects with diabetes. This study was conducted to investigate the dose-exposure and dose-response relationships of insulin glulisine compared with RHI in subjects with type 1 diabetes.

RESEARCH DESIGN AND METHODS
In a single-center, randomized, euglycemic, glucose-clamp trial, a total of 18 male patients with type 1 diabetes were included in the study (aged 35.0 ± 9.2 years, body mass index 24.5 ± 2.7 kg.m⁻², HbA₁c 7.7 ± 0.9%). The study included a screening visit, three glucose-clamp visits with insulin glulisine, three glucose-clamp visits with RHI and a follow-up visit.

Basal insulin supplementation was replaced by short-acting insulin for a minimum of 24 hours prior to study start. Subjects were attached to a Biostator (Life Science Instruments) and overnight blood glucose levels were manually maintained at 80–150 mg.dl⁻¹ (4.4–8.3 mmol.l⁻¹) with intravenous RHI infusion (Insuman Rapid U100, Aventis Pharma). On the morning of treatment, blood glucose was adjusted to 100 mg.dl⁻¹ (5.5 mmol.l⁻¹) prior to medication, and maintained throughout the euglycaemic clamp with an algorithm-based automated infusion of 20% glucose solution. Intravenous RHI infusion was discontinued immediately before the injection of insulin glulisine or RHI in a pre-set sequence of doses (0.075, 0.15 or 0.3 U.kg⁻¹ body weight). The glucose-clamp was stopped when blood glucose levels reached ≥180 mg.dl⁻¹ (≥10 mmol.l⁻¹) for 30 minutes in the absence of an intravenous glucose infusion (end-of-dose phenomenon) or after 10 hours, depending on which came first.

Insulin was sampled at pre-defined times while blood glucose and glucose infusion rates (GIR) were recorded throughout the glucose-
clamp period on a minute-to-minute basis by the Biostator and the data smoothed.

Both insulin exposure and metabolic response were tested for strict monotonic increases with dose. Dose proportionality was assessed by pair-wise dose comparisons for: early insulin exposure (INS-AUC_{0–2h}), total insulin exposure (INS-AUC_{total}), maximal insulin concentration (INS-C_{max}), early glucose disposal (GIR-AUC_{0–2h}), total glucose disposal (GIR-AUC_{total}) and maximal effect (GIR_{max}). Point estimates (PE) and 95% confidence intervals (CI) for the ratio of treatment means were calculated for the doses of 0.075 U.kg^{-1} versus 0.15 U.kg^{-1} and 0.15 U.kg^{-1} versus 0.3 U.kg^{-1}. Dose proportionality within the commonly accepted bioequivalence criteria (0.80–1.25) was confirmed when the 95% CI for a treatment ratio was within 1.6–2.5.

RESULTS

All subjects maintained euglycemia at 100 mg.dl^{-1} (5.5 mmol.l^{-1}) for the duration of the clamp, except for three subjects on 0.075 U.kg^{-1} of RHI who demonstrated transient blood glucose elevations (<130 mg.dl^{-1} [7.2 mmol.l^{-1}]) in the absence of glucose infusion (data not shown). Figure 1 displays the time–concentration and time–action profiles after subcutaneous injection of 0.075, 0.15 and 0.3 U.kg^{-1} of insulin glulisine and RHI. Insulin glulisine and RHI showed dose-proportional increases in the dose ranges 0.075, 0.15 and 0.3 U.kg^{-1} for INS-AUC_{total} (PE [95% CI] for treatment ratio 0.15/0.075 and 0.3/0.15 U.kg^{-1}: 2.1 [2.0, 2.2] and 2.2 [2.1, 2.3] vs 1.8 [1.6, 2.0] and 2.0 [1.8, 2.2]) and INS-C_{max} (PE [95% CI]: 1.7 [1.6, 1.9] and 2.0 [1.8, 2.1] vs 1.7 [1.6, 1.9] and 1.8 [1.6, 2.0]). However, at all doses, insulin glulisine was about twice as rapidly absorbed as RHI (INS-AUC_{0–2h}: 3792, 6676 and 12992 vs 2211, 3448 and 5792 µU.min.ml^{-1}; p <0.05) and reached maximal serum concentrations in about half the time (INS-T_{max}: 47, 57, and 72 vs. 82, 104 and 119 min; p <0.05). Corresponding glucose disposition for insulin glulisine was twice as large within 2 hours after injection than with RHI (GIR-AUC_{0–2h}: 314, 491 and 536 vs 127, 219 and 294 mg.kg^{-1}; p <0.05) but was similar in extent upon completion (GIR-AUC_{total}: 499, 1090 and 1476 vs. 416, 1076 and 1555 mg.kg^{-1}; p=NS). End of dose phenomena were observed earlier with insulin glulisine by about 1.5–2.5 hours at any dose (7.5, 9.1, and 9.6 hours for insulin glulisine and 9.2, 9.5, and 10.0 hours for RHI). A monotonically increasing dose-response relationship in GIR-AUC_{total} was observed in 16 of 18 subjects for either insulin, but dose proportionality was only shown for the dose range 0.075–0.15 U.kg^{-1} with insulin glulisine (PE [95% CI]: 2.2 [1.7, 2.9]) but not with RHI at any treatment ratio. In contrast, only 5–6 subjects displayed individual dose separation for GIR-AUC_{0–2h} with each step and insulin.

All subjects completed the six trial visits without clinically relevant adverse events. Three instances of headaches occurred with the highest dose of insulin glulisine.

CONCLUSIONS

In the absence of basal insulin supplementation, this Biostator-based euglycemic glucose-clamp study in subjects with type 1 diabetes showed dose-proportional exposure of
clinically relevant doses (0.075, 0.15 and 0.3 U.kg\(^{-1}\) – corresponding to 6, 12 and 24 U for a 80 kg subject) of a rapidly absorbed and acting insulin analog, insulin glulisine, and RHI. This is accompanied by dose proportionality in total metabolic response between 0.075 and 0.15 U.kg\(^{-1}\) for insulin glulisine only and less than proportional increment with the large dose (0.3 U.kg\(^{-1}\)) for either insulin. This indicates saturation of efficacy for both insulins and implies that a substantially larger than twofold increase in insulin dose is necessary to achieve a doubling of the metabolic effect with high doses.

For reliable dosing there should be no substantial shift in the absorption and action profile with increasing doses. The data confirm that insulin glulisine at any dose is absorbed approximately twice as fast and takes effect twice as rapidly compared with RHI, while disposing the same quantity of glucose as RHI at any dose.

In conclusion, insulin glulisine presents rapid, dose-proportional absorption, resulting in saturable, dose-proportional glucodynamic activity in subjects with type 1 diabetes, allowing predictable control of postprandial hyperglycemia.

ACKNOWLEDGEMENTS
This study was sponsored by sanofi-aventis. Data have been previously presented at the ADA meeting in 2005.
REFERENCES


Figure 1: Time–concentration (a, c) and time–action profiles (b, d) of 0.075 U.kg\(^{-1}\) (dashed–dotted line), 0.15 U.kg\(^{-1}\) (solid line) and 0.3 U.kg\(^{-1}\) (dashed line) insulin glulisine (a, b) and regular human insulin (c, d) after subcutaneous injection in subjects with type 1 diabetes. GIR=glucose infusion rate