Internet diabetic patient management using a short messaging service automatically produced by a knowledge matrix system

Chulsik Kim, MD, Haijin Kim, MD, Jisun Nam, MD, Minho Cho, MD, Jongsuk Park, MD, Eunseok Kang, MD, PhD, Chulwoo Ahn, MD, PhD, Bongsoo Cha, MD, PhD, Eunjig Lee, MD, PhD, Sungkil Lim, MD, PhD, Kyung Rae Kim, MD, PhD, and Hyunchul Lee, MD, PhD

Correspondence:
Dr Chul Woo Ahn, Internal Medicine, Yongdong Severance Hospital, 146-92, Dogok-dong, Kangnam-ku, PO Box 135-720, Seoul, Korea.
E-mail: acw@yumc.yonsei.ac.kr

Received for publication 4 December 2006 and accepted in revised form 27 July 2007.

3-2005-0286, Clinical Trial Center of Yonsei University Medical College
A lifelong, strict self-care is essential in the management of diabetes along with an easy access to health care system (1-3). However, there is an evident limitation in fulfilling these conditions in the current health care system, which is oriented toward outpatient care (4-7). Thus, various strategies have been designed to improve the quality and efficiency of treating diabetic patients.

Wireless technology is a world-wide communication system that allows a person to contact others anywhere at any time. Therefore, doctor-patient communication becomes possible at any place with the use of this system (8). Currently, nearly all adults and Adolescents have their own cellular phones in civilized countries and use short message services (SMS) in daily lives. Moreover, numerous people are using ultra-fast Internet services at work or home. We designed an Internet-based diabetic patient management system using SMS, which was automatically produced by a knowledge matrix. Subsequently, we compared biochemical profiles and clinical status between diabetic patients who used our system for 12-weeks and those who received the conventional outpatient management over the same period.

RESEARCH DESIGN AND METHODS
We developed a knowledge matrix containing information on proper diet and exercise for diabetic patients based on the Korea-Staged-Diabetes-Management-Guideline (Table 1). Moreover, with the technical assistance from ISU UBCare Company, we created a website program (http://yds.healthkorea.net) which was used to formulate appropriate messages through an automated algorithm. We also designed a device that had the dual function of a glucometer and a pedometer. By connecting this device to the patient’s cellular phone, the measured data on the device were automatically transmitted to his/her personal data sheet on the website. Patients were asked to keep a record of how much and what kind of food they ate as well as how much they exercised on the website. When these data were sent to the main menu, our system automatically composed messages, which were then sent to the patient. In addition, patients could check their clinical data by logging into the website, where they could obtain various information on diabetes and incorporate the information into their daily lives for the better self-management of diabetes.

Eighty type 2 diabetic patients were recruited (mean age 48.1±9.6 years, mean duration of diabetes 7.8±6.7 years, 65.0% male). They were randomly divided into the intervention and control groups equally. Patients were excluded if they had any concomitant disease that might affect the outcomes of the study or patient compliance (9).

We measured anthropometric data, blood pressure, and biochemical profiles of the participants after 8h of fasting at start of the study and at 12 weeks. Patients in the intervention group were taught how to use our system for 12 weeks without any outpatient visit. Patients in the control group were provided with glucometers and received their usual outpatient management from their physicians. The protocol was approved by the local ethical committee.

RESULTS
Thirty-five patients in the intervention group and 36 patients in the control group completed the experimental protocol over a 12-week period. During the study period, the intervention group checked blood glucose more frequently than the control group (167.1±88.2 vs. 44.6±24.4 \(P<0.001 \)). The average frequency of diet-related data input and pedometer data transfer to the system in the intervention group was 12.7±3.0 and 56.9±13.7 per day, respectively. After the 12-weeks, daily calorie consumption increased significantly in the intervention group (from 178.1±76.4 to 381.3±132.1 kcal, \(P<0.001 \)).
Neither drug modification nor a hypoglycemic event was reported in the two groups during the trial. Upon follow-up examination at 12 weeks, the body weight was decreased from 66.6±11.8 to 64.7±10.2 kg in the intervention group (P=0.037), while no change was observed in the control group (69.7±12.1 to 69.2±11.1 kg, P=0.117). A significant reduction in HbA1c was observed in the intervention group (from 8.06±1.40 to 7.34±1.07%, P<0.001), but not in the control group. Fasting and postprandial glucose levels were also significantly decreased in the intervention group (from 159.4±43.7 to 132.3±29.8 mg/dL, P<0.001; from 233.4±95.7 to 180.9±59.4 mg/dL, P=0.001, respectively). However, no such changes were observed in the control group.

At the end of this study, HbA1c levels were significantly decreased in the intervention group than in the control group (0.72±0.80 vs 0.15±0.85% Δ from baseline, P=0.005). Fasting glucose and postprandial glucose levels were also significantly decreased in the intervention group than in the control group (27.1±38.6 vs 2.3±33.8 mg/dL Δ from baseline, P=0.005; 52.5±82.3 vs 2.5 ± 65.1 mg/dL Δ from baseline, P=0.006, respectively). However, total cholesterol, triglyceride, LDL and HDL-cholesterol levels in the intervention group were not significantly different compared with those in the control group (P=0.194, 0.897, 0.951, 0.105, respectively).

CONCLUSIONS
Web based diabetes management systems that provide interactive components have already been proven to be effective in the glucose control (10). However, our study was unique in that clinical recommendations were generated automatically through the preformed knowledge algorithm. There were several reasons for the improved glucose control in the intervention group. Primarily, the patients were provided with the medical advices more often than those in the control group. Besides, they received medical feedback based on their most recent clinical data. These factors may have inspired the patients to more actively modify their lifestyle for a better glucose control. In particular, the pedometer data which represented the amount of patient’s daily activity might actually serve as a strong motivator for the patients to exercise more (11-13).

Of the 40 patients in the intervention group, 35 patients completed the study. Of 5 patients withdrawn from the study, 3 used our system throughout the study period whereas 2 didn’t revisit our hospital at 12 weeks. Therefore, at the end of this study, patient compliance with our new system was 92.5% (37/40), and the survey on patient satisfaction scored 4.1 points out of 5 (data not shown). Our system not only lowered the patients’ blood glucose levels, but also helped sustain the decreased levels, because the system could continuously prompt the patient’s intrinsic motivation to control their glucose levels.

Furthermore, we believe our system, which provides patients with medical advices formulated from an automated algorithm via SMS, is far more economic than the similar systems previously introduced (8), in which medical personnel were required for the same process.

In this study, although we have demonstrated that our system can reduce HbA1c levels during a short-term study period of 12 weeks, the long-term effectiveness of the system on the management of diabetes remains to be determined.

In conclusion, our study suggests that internet-based monitoring and computerized management of diabetes may be more effective than the conventional management. However, more studies are required before it can be universally used.
REFERENCES

Table 1. Organization of knowledge matrix system

<table>
<thead>
<tr>
<th>Item</th>
<th>Assessment Details</th>
</tr>
</thead>
</table>
| 1) Blood glucose (fasting, postprandial two hour, and bedtime) | - assessment of daily blood glucose levels
- assessment of mean blood glucose levels of a week, frequency of blood monitoring, hypoglycemic and hyperglycemic events during a week, and comparison with the previous week
- assessment of mean blood glucose levels of a month, frequency of blood monitoring, hypoglycemic and hyperglycemic events during a month, and comparison with the previous month |
| 2) Diet | - assessment of daily caloric intake and meal balance
- assessment of weekly caloric intake, meal balance, high fat diet, and comparison with the previous week
- assessment of monthly caloric intake, meal balance, high fat diet, weight, and comparison with the previous month |
| 3) Exercise | - assessment of duration, frequency, and types of daily exercise
- assessment of duration, frequency and types of weekly exercise, and comparison with the previous week
- assessment of duration, frequency and types of monthly exercise, and comparison with the previous month |

The contents of the message are composed of assessment (number = 142), recommendation (number = 52), encouragement (number = 74), and compliment (number = 56) that correspond to the patient’s current status concerning their glucose level, diet, and exercise.