Addition of Pioglitazone and Ramipril to Intensive Insulin Therapy in Type 2 Diabetic Patients Improves Vascular Dysfunction by Different Mechanisms

Marianella Fernandez MD, Curtis Triplitt PharmD, Estela Wajeberg MD, Apiradee A. Sriwijilkamol MD, Nicholas Musi MD, Kenneth Cusi MD, Ralph DeFronzo MD, Eugenio Cersosimo MD PhD

Running Title: “Mechanisms of Improved Vascular Dysfunction in Diabetes“

Correspondence:
Eugenio Cersosimo M.D., Ph.D.
Mail Code 7886
7703 Floyd Curl Drive
San Antonio, Texas, 78229-3900
E-mail: Eugenio.Cersosimo@uhs-sa.com

Received for publication 11 April 2007 and accepted in revised form 27 September 2007.
Abstract

Objective: We examined the relationship between glycemic control, vascular reactivity and inflammation in T2DM subjects

Study Design: Thirty subjects with T2DM were initiated on intensive insulin therapy (continuous subcutaneous insulin infusion [n=12] or multiple daily injections [n=18]) and then randomized to either pioglitazone (PIO, 45 mg/d), ramipril (RAM, 10 mg/d), or placebo (PLC) for 36 wks. Euglycemic hyperinsulinemic clamp was used to quantify insulin resistance and plethysmography to assess changes in forearm blood flow (FBF) after: (i) 5 min of reactive hyperemia (RH); (ii) brachial artery infusion of acetylcholine (Ach: 7.5,15,30 µg/min) and sodium nitroprusside (SNP: 3,10 µg/min)

Results: The decrease in HbA\textsubscript{1c} (~9.0 to 7.0%) and FPG (~190 to 128 mg/dl) were equal in all groups. In PIO, glucose disposal increased from 3.1 to 4.7 mg/kg•min, and there was a greater decrease in plasma triglycerides (~148 vs. 123 mg/dl) and FFA (~838 vs. 595 mEq/L) vs. RAM or PLC (p<0.05). Plasma adiponectin doubled with PIO (6.2±0.7 to 13.1±1.8 µg/ml), while endothelin-1 decreased only with RAM (2.5±0.2 to 1.1±0.2 pg/ml, p<001). The increase in FBF during RH (215%) and Ach (from 132 to 205%, 216 to 262%, and 222 to 323%) was greater in PIO vs. RAM or PLC. In contrast, FBF during SNP was greater in RAM (141 to 221% and 218 to 336%) vs. PIO or PLC (all p<0.05).

Conclusion: Addition of PIO or RAM to intensive insulin therapy in T2DM further improves vascular dysfunction. PIO enhances endothelial-mediated, whereas ACE inhibition enhances endothelial-independent vasodilation. These different vascular effects, combined with the observation that PIO decreases FFA and triglycerides and increases adiponectin, while RAM reduces endothelin-1, suggest that different mechanisms underlie the vascular responses.
Introduction
Atherosclerotic cardiovascular disease affects more than 80% of type 2 diabetic patients and accounts for a substantial increase in the morbidity and mortality (1,2). The clustering of risk factors, including hyperglycemia, hypertension, dyslipidemia and visceral obesity, only can partially explain the 2 to 4-fold higher frequency of cardiovascular events reported in diabetic patients (3). Recent evidence suggests that insulin resistance, vascular endothelial dysfunction, and inflammation (4) play critical roles in the development of atherosclerosis. Thus, interventions aimed at improving insulin resistance and vascular dysfunction and inflammation may provide additional benefits to diabetic subjects at risk for cardiovascular disease over and beyond normalization of conventional risk factors (5).

Intensive insulin therapy (IT) to maintain near-normoglycemia has been associated with a decrease in long-term morbidity (6) and enhanced survival in selected diabetic (7) and non-diabetic (8) hospitalized patients. More recently, a reduction in cardiovascular events also has been demonstrated in type 1 diabetic patients treated aggressively with insulin for more than 10 years (9). In addition, the use of thiazolidinediones [TZD] (10) and agents that inhibit the angiotensin system (11,12) have been shown to result in improved cardiovascular outcomes in diabetic subjects; TZDs also improve dyslipidemia and enhance insulin sensitivity. Of note, both TZDs and ACE inhibitors enhance insulin signal transduction and increase phosphoinositol-3 kinase/Akt activity in vitro, which would be expected to augment nitric oxide synthetase activity (13), thereby improving endothelial dysfunction. Previous studies have confirmed that vascular dysfunction and inflammation are attenuated with TZD therapy in diabetic subjects (14-16), though most studies could not discern whether these metabolic effects have a direct impact on the vascular structure and function, and whether these are mediated by the reduction in glycemia or some other action of the TZD. In some studies (16,17) amelioration of vascular dysfunction and reduction in inflammatory biomarkers was shown to occur independently of glycemic control. This finding, along with the observation that abnormal vascular and inflammatory responses are improved with angiotensin converting enzyme blocking agents (14-17), support the concept that vascular dysfunction cannot be attributed solely to elevated plasma glucose concentrations.

To gain insight into the pathophysiologic and molecular mechanisms responsible for endothelial dysfunction, we examined vascular reactivity and markers of inflammation in patients with type 2 diabetes who were intensively treated with insulin and subsequently randomized to receive either pioglitazone (45 mg/d), ramipril (10 mg/d), or placebo for 36 weeks, in a double-blind study.

Experimental Design
Subjects
Thirty adult Mexican American patients with type 2 diabetes mellitus (T2DM) who required insulin therapy (HbA1c>8.0 despite optimized oral agent therapy) were recruited from the outpatient clinic at the Texas Diabetes Institute (TDI) in San Antonio, Texas. The protocol was approved by the Institutional Review Board of the University of Texas Health Science Center at San Antonio, and prior
to study all subjects provided informed
voluntary written consent. Patients on
insulin combination therapy with
metformin, sulfonylurea and/or
meglitinides were included, but those on
thiazolidinediones were excluded. Patients
taking angiotensin converting enzyme
inhibitor (ACE) or angiotensin II-receptor
blockade (ARB) agents were switched to
alpha-methyl dopa and the dose was
adjusted to re-establish blood pressure
(<130/80 mmHg) control before they were
enrolled in the study. The ACEI/ARB
therapy was discontinued for at least 2
months prior to study, and other
medications were allowed only if stable
for at least 3 months.

Protocol

Subjects reported to the CRC after a 10 h
overnight fast and blood samples for
measurement of fasting plasma glucose,
lipids, and hemoglobin A\textsubscript{1c} and urine for
the determination of microalbumin-to-
creatinine ratio were obtained. Three
consecutive sitting blood pressure
measurements were recorded with an
automated arm cuff. Patients then were
enrolled in a 3-day comprehensive
diabetes education and nutritional
program conducted at the TDI. Patients
were eligible for either therapy and
allowed to select between IT using MDII
or CSII. MDII consisted of a basal-bolus
program with four daily insulin injections
using a combination of insulin glargine
(Sanofi-Aventis) at bedtime plus pre-meal
insulin aspart (Novo Nordisk). CSII was
implemented using the Medtronic/Minimed (n=6) or the Ani
mas Corporation (n=6) pump using basal
infusion and pre-meal boluses of insulin
aspart (Novo Nordisk). Before
randomization, patients received a
euglycemic hyperinsulinemic clamp and
vascular studies

Euglycemic HyperInsulinemic Clamp

Insulin sensitivity was quantitated with
the euglycemic hyperinsulinemic (80
mU/m2.min) clamp technique (18), which
is sufficient to suppress endogenous
insulin production by over 90% (19). The
rate of exogenous glucose infusion was
averaged during the last 60 minutes of the
insulin clamp to provide a measure of
insulin-stimulated total body glucose
metabolism [M]. Prior to the start of the
insulin clamp, baseline blood samples
were obtained from the arterialized hand
vein for the determination of plasma
concentrations of: free of fatty acids,
adiponectin, endothelin–1, adhesion
molecules (VCAM, ICAM), high
sensitivity C-reactive protein (hs-CRP);
tumor necrosis factor alpha (TNF-\alpha),
interleukin-6 (IL-6), lipids (total/
HDL/LDL cholesterol and triglycerides),
and lipid particle size.

Vascular Studies

Endothelial function was evaluated in all
patients using venous occlusion
plethysmography [VOP] (Hokanson,
Bellevue, WA). Changes in resting
forearm blood flow (FBF) following (i) 5
minutes of transient ischemia (RH) and
(ii) brachial artery infusion of
acetylcholine [Ach] and sodium
nitroprusside [SNP] were documented by
VOP. In the morning, after an overnight
fast and a rest of 30 minutes in the supine
position, 5 measurements of FBF were
performed to establish the baseline value.
An arm cuff then was inflated above the
patient’s systolic BP for 5 minutes.
Changes in FBF were inflated at 5
seconds intervals after the arm cuff was
released, and a mean value was
calculated. Then, an 18-gauge catheter
(Arrow International, Erding, Germany)
was introduced into the brachial artery of
the non-dominant arm under local
Mechanisms of Improved Vascular Dysfunction in Diabetes

After 60 minutes of rest, test substances were infused into the brachial artery according to previously published technique (14, 20). In brief, the initial 6 minute infusion of SNP (3 µg/min) was followed by an increase to 10 µg/min for an additional 6 minutes. After the line was cleared, Ach was infused at a constant rate of 7.5 µg/min for 8 minutes and then increased to 15 and 30 µg/min for 6 minutes in sequence. FBF was measured 5 times during the last 3 minutes of each intra-brachial infusion period and a mean value was calculated. Baseline FBF was expressed as ml/100 ml of forearm tissue per minute using a software program (Hokanson, Bellevue, WA) and expressed as a percent changes from basal. At the end of the experiment the arterial line was removed and compression pressure applied to the artery. All patients were contacted within 24 hrs and 1 week after the study to ascertain that there had been no complications.

Randomization
Upon successful completion of the baseline studies, patients were randomized either to pioglitazone (PIO, 45 mg/d), ramipril (RAM, 10 mg/d) or placebo (PLC), for 36 wks, in a double-blind fashion. Pioglitazone was started at the dose of 15 mg daily and then increased to 30 mg daily at week 2, and to 45 mg daily at week 4. Ramipril was started at the dose of 5 mg daily and increased to 10 mg daily as tolerated at 2 and 4 weeks. Placebo tablets were added to match the other treatment regimen. Participants were contacted by phone at least weekly during the first two months. Insulin dose was adjusted according to the UT Hospital protocol to achieve the following pre-established glycemic goals: fasting and pre-meal capillary blood glucose (BG) values between 80-120 mg/dl; 2 hour post-meal <160 mg/dl; bedtime levels <140 mg/dl. If the pre-meal glycemic goal range was not attained, patients were instructed to supplement their usual insulin dose with an additional 1,2 or 3 units if the capillary BG measurement was >120 mg/dl, >150 mg/dl, or >180 mg/dl, respectively. If the capillary BG measurement was <80 mg/dl the calculated pre-meal insulin dose was reduced by 1-2 units. If the fasting BG concentration was >80<120 mg/dl for a minimum of three consecutive days, the insulin basal dose and the basal infusion rate were adjusted accordingly by ~10% daily.

Follow-up Plan
All patients were asked to return for office visits at 2-4 week intervals during the first 3 months and every two months thereafter for the remainder of the 9-month study period. During each visit compliance with the assigned therapeutic regimen was ascertained and self-monitored glucose values were reviewed, and routine blood and urine samples were obtained. The hyperinsulinemic clamp, vascular studies, and measurements of markers of endothelial damage and inflammation were repeated at 36 weeks (study termination).

Laboratory Analyses
Plasma glucose concentration was measured using the glucose oxidase method with the Beckman Glucose Analyzer and tritiated glucose specific activity was determined in barium/zinc deproteinized plasma samples. HbA1c was measured by affinity chromatography (Biochemical Methodology, Drower 4,350; Isolab, Akron, OH), plasma insulin (Diagnostic Products, Los Angeles, CA) and plasma free fatty acid (FFA)
Mehanisms of Improved Vascular Dysfunction in Diabetes

concentration by enzymatic colorimetric quantification (Wako Chemicals, Neuss, Germany), adiponectin by commercially available radio-immunoassay (Linco, St. Charles, MO), and plasma CRP, VCAM, ICAM, TNF-α, IL-6, and endothelin-1 by ELISA assays (Linco, St. Charles, MO). Lipid profile and particle size were determined by nuclear magnetic resonance spectroscopy (Liposcience, Inc, Raleigh, NC).

Statistics

The sample size was estimated on the basis of our previous vascular data, and powered to demonstrate a difference between the mean basal value increase of 50% and the alternate mean increase of 75% between groups in forearm blood flow during reactive hyperemia, and following Ach and SNP brachial artery infusions before and after the interventions. A total number of 10 subjects per group was derived from a two-sided test with significance levels α (=0.05) and a power of 1-β (= 0.90) using a mean standard deviation of ±30%. Changes in metabolic (fasting plasma glucose, free fatty acids, hemoglobin A1c, total and LDL, HDL cholesterol and triglyceride concentrations, and in insulin-mediated glucose disposal), in inflammatory biomarkers (hsCRP, adiponectin, endothelin-1, adhesion molecules VCAM, TNF-α and IL-6) and in vascular parameters (percent change in forearm blood flow above basal during reactive hyperemia, Ach-stimulated and SNP-stimulated vasodilation) were analyzed in the intensively treated diabetic patients (MDII and CSII together) assigned to each oral therapy and between groups using analysis of variance with repeated measures (ANOVA). Statistical significance (p<0.05) was considered when the within group variability was inferior to the inter-group variability. Univariate analyses was performed between vascular responses (RH, Ach- and SNP-vasodilation) and hemoglobin A1C values, and multiple regression analyses (simultaneous regression) was conducted between the metabolic, the inflammatory biomarkers and the vascular parameters listed above, as continuous variables in a stepwise regression. Statistical significance was considered for p value < 0.05. All statistical analyses were performed using a Sigma Stat software program.

Results

Baseline characteristics showed patients of comparable gender (~6F/4M), mean age (~46 yrs), duration of disease (6.2 to 8.4 yrs), BMI (~31-33 kg/m²), waist circumference (101-104 cm), blood pressure (~130/70 mm Hg), insulin dose (~1.2 U/kg.day), mean HbA1c (~9.0%), and fasting plasma glucose (~190 mg/dl). The use of oral anti-diabetic medications (sulfonylureas, meglitinides, and metformin) was similar in all three groups. Nearly one-half of the patients was taking a statin, and one-third was on antihypertensive therapy, with alpha-methyl dopa substituted for ACE inhibitors (n=15) and ARB (n=2). After 36 weeks of IT, mean body weight increased in all patients, by 1.7 kg in the placebo group, 3.2 in the ramipril group and 4.4 kg in the pioglitazone group (all p<0.01 vs. baseline). The average daily insulin requirement remained unchanged in the placebo group (~1.2 U/kg) and decreased similarly in the ramipril and pioglitazone groups to 1.0±0.2 U/kg (p<0.05). Except for the discontinuation of sulfonylureas and meglitinides (to avoid hypoglycemia), all other medications (including metformin) were
Mechanisms of Improved Vascular Dysfunction in Diabetes

maintained stable in all patients during the entire study period.

IT using either MDII or CSII was well tolerated by patients, and there were no withdrawals. During the 36 weeks of observation, 14 patients (6 in the placebo, 4 in the pioglitazone and 4 in the ramipril group) had 33 hypoglycemic episodes (0.32 patients per year), defined as symptomatic hypoglycemia requiring glucose ingestion. Mechanical malfunction of the insulin pump was documented on four occasions, and patients had to temporarily (< 2 days) interrupt the insulin pump therapy and substitute multiple daily injections. One patient developed an abdominal skin infection, which resolved with oral antibiotic therapy and local treatment. Three patients in the pioglitazone and one in the ramipril group developed mild peripheral edema that did not require therapy.

Metabolic and Inflammatory Parameters (Table 1)

Patients in all three groups showed a substantial improvement in their metabolic control over the 9 month period, with reduction in fasting plasma glucose concentration to 123-128 mg/dl and decrease in mean HbA1c to ~7.0% (p<0.01). Plasma free fatty acid (838±84 to 595±65 mEq/L) and triglyceride (148±17 to 123±11 mg/dL) concentrations decreased significantly (p<0.01 vs. baseline and vs. placebo and ramipril groups) after 9 months of pioglitazone therapy. In the pioglitazone group, although plasma LDL concentration did not change (107±7 vs. 105±12 mg/dl), both HDL concentration (45±3 to 51±3 mg/dl) and LDL particle size (20.2±0.5 nm to 21.2±0.8 nm) increased significantly (p<0.05 vs. placebo and ramipril). Plasma adiponectin levels more than doubled (6.2±0.7 to 13.1±1.8 µg/ml) with pioglitazone therapy (p<0.001 vs. baseline, and vs. placebo and ramipril), and remained unchanged in the placebo and ramipril groups. Plasma levels of endothelin-1 (from 2.5±0.2 to 1.1±0.2 pg/ml) and IL-6 (from 3.6±0.3 to 2.4±0.2) decreased significantly with the addition of ramipril to intensive insulin therapy (p<0.05 vs. baseline and vs. placebo and pioglitazone). After 36 weeks, M was significantly enhanced by ~50% in the IT group that received pioglitazone, (3.1 to 4.7 mg/kg.min; p<0.01 vs. baseline and vs. placebo and ramipril groups). The increments in M in the placebo (4.5 vs. 4.9 mg/kg.min) and ramipril (3.2 vs. 3.6 mg/kg.min) groups were not statistically significant.

Vascular Reactivity (Figure 1)

Vascular reactivity was assessed by the changes in FBF during RH, and during intra-brachial infusion of Ach and SNP. Basal FBF was comparable in all groups: 2.4-2.6 ml/100ml.min. The percent rise in FBF following 5 minutes of brachial artery occlusion was similar (~30-40% above baseline) in all groups prior to the start of insulin/drug therapy (Figure 1A). After 36 weeks of therapy, the percent increase in FBF during RH was significantly (p<0.05) greater in PIO (215%) compared to PLC (170%) and RAM (181%) groups. Pioglitazone-treated patients achieved the highest absolute increase in FBF during RH (5.2 ml/100ml•min) compared to PLC (4.3) and RAM (4.2) groups (both p<0.05). The percent rise in FBF in the ramipril group during Ach infusion was: 139 to 181% [7.5 µg/min], 147 to 196% [15 µg/min], and 193 to 230% [30 µg/min] and did not differ from placebo (Figure 1B). The percent increase in FBF with
Ach infusion was greater with PIO vs. both PLC & RAM (132 to 205% [7.5 µg/min], 216 to 262% [15 µg/min], and 222 to 323% [30 µg/min]) (all p<0.05-0.01). In contrast, endothelial-independent SNP-stimulated vasodilation (Figure 1C) was significantly greater in the ramipril group (p<0.05) with percent increments of 141 to 221% [3 µg/min] and 218 to 336% [10 µg/min]. Percent change in FBF in the PLC (151 to 182% at 3 µg/min and 237 to 265% at 10 µg/min) and PIO (138 to 184% at 3 µg/min and 230 to 257% at 10 µg/min) groups were small and did not reach statistical significance.

Multivariate analyses were performed between the metabolic, inflammatory biomarkers and vascular continuous variables. Positive correlations between the change in HbA1c and reactive hyperemia (p=0.04), and between fasting plasma glucose (p<0.01) and insulin-mediated glucose disposal (p<0.05) and Ach-stimulated vasodilation [30 µg/min] were obtained, indicating that glycemic control and insulin sensitivity were closely associated with vascular reactivity. In multiple regression analyses, there were also strong negative correlations between changes in plasma triglyceride concentration (p=0.04) and in plasma levels of hsCRP (p<0.02) with SNP-stimulated [10 µg/min] vasodilation, and positive correlations between plasma HDL cholesterol and both low [3 µg/min] and high [10 µg/min] SNP-stimulated vasodilation in all subjects, which imply also that there was a role for plasma lipid concentrations in vascular responses. Amongst the inflammatory parameters, plasma adiponectin concentration showed an independent strong positive correlation with Ach-stimulated vasodilation [30 µg/min] (p<0.001), whereas plasma endothelin-1 levels showed a negative correlation with SNP-induced vasodilation [3 µg/min]) (p=0.04).

Discussion
In this study we have demonstrated that the addition of either the insulin sensitizer pioglitazone or the angiotensin-converting enzyme blocking agent ramipril further improves vascular dysfunction and markers of inflammation independent of glycemic control. Our data indicate that pioglitazone primarily enhances endothelial-mediated, whereas ramipril augments endothelial-independent vasodilation. These different vascular effects, combined with the observation that pioglitazone increases the vasodilator adiponectin concentration, while ramipril reduces the vasoconstrictor endothelin-1 levels suggest that different and complementary mechanisms underlie the observed improvements in vascular reactivity. In agreement with previous studies, pioglitazone therapy also was accompanied by a reduction in plasma fatty acids and triglyceride concentrations, both of which may play a role in the correction of vascular dysfunction (14-16).

It should be emphasized that intensive insulin therapy alone, in the placebo group, was effective in decreasing the circulating inflammatory biomarker hsCRP, and that this decrease was equivalent to that seen with the addition of pioglitazone or ramipril. Moreover, endothelial-mediated vasodilation, measured by: (i) the percent increase in FBF during RH and during the low Ach [7.5] infusion and (ii) endothelial-independent vasodilation following both low [3.0] and high [10.0] dose SNP infusion were improved in the placebo group, and there was a significant
correlation between glycemic control and vascular reactivity in all groups. These findings indicate that, in addition to attenuating inflammation, intensive insulin therapy improves vascular endothelial dysfunction. The independent association between the decrease in plasma hsCRP levels and the improvement in vasodilation support the concept that intensive insulin therapy improves vascular endothelial dysfunction, in part, via attenuation of the inflammatory response. The possibility that acute glycemic fluctuations, induced by insulin therapy interfere with vascular reactivity is not ruled out, however, since these may not be adequately reflected in the HbA1c values (21). The relationship between hyperglycemia and vascular reactivity previously has been examined in both diabetic (22) and non-diabetic subjects (8) and, in the presence of hyperglycemia, endothelial-mediated vascular dilation is impaired (23, 24). Correction of hyperglycemia, regardless of the therapy, has been shown to enhance endothelial dependent vasodilation (24-26), and intensive insulin therapy is believed to reduce the formation of reactive oxygen and nitrogen species in tissue (22,24,26) and macrophages (27), thus minimizing the inflammatory response.

Our findings indicate that additional mechanisms, beyond glycemic control, and more directly related to changes in insulin resistance and vascular reactivity must play an important role in the improvement in endothelial dysfunction observed with these agents. There is increasing evidence that, in order to prevent/retard atherosclerotic cardiovascular complications in type 2 diabetic patients, the underlying defects of both insulin resistance and endothelial dysfunction need to be addressed (5). Enhanced insulin sensitivity consistently has been demonstrated with pioglitazone (14,19), although the beneficial effect of ramipril on insulin sensitivity is more controversial (30), and in a recent trial the diabetes conversion rate was unaffected (30). Both pioglitazone and ramipril have been shown to improve vascular reactivity (16,30,31). In the present study, a 50% increment in insulin-mediated glucose disposal was demonstrated during the hyperinsulinemic clamp in the pioglitazone-treated group. The modest non-significant increase in insulin sensitivity in the ramipril-treated group is consistent with previously reported results (28). We observed a highly significant correlation between the improvements in peripheral insulin resistance and in endothelial-mediated vasodilation, suggesting that enhanced insulin sensitivity, induced by pioglitazone, contributes to the improvement in endothelial-mediated vasodilation. However, previous studies by us (14) and others (15,16) also have shown that pioglitazone can improve endothelial dysfunction independent of changes in blood glucose levels. Thus, it is likely that the beneficial effects of TZDs on vascular function are mediated by: (i) direct effects on the vascular endothelium, (ii) improved glycemic control, and (iii) enhanced insulin-mediated glucose metabolism.

Pioglitazone did not improve endothelial-independent vasodilation beyond that observed with intensive insulin therapy alone. In contrast, ramipril significantly increased endothelial-independent vasodilation above that observed with insulin alone. The improvement in SNP-stimulated vasodilation (an index of endothelial-independent nitric oxide-
mediated vaso-relaxation) was closely correlated with the reduction in plasma endothelin-1 levels. Following pioglitazone treatment for 36 weeks, plasma adiponectin levels doubled, and the increase correlated closely with improved endothelial-dependent vasodilation. Based on these findings, we speculate that increased levels of the vasodilator adiponectin (36) plays a role in mediating the improvement in vascular reactivity following pioglitazone, while a decrease in the vasoconstrictor endothelin-1 (33) levels contributes to the enhanced vascular function observed with ramipril. These complementary mechanisms suggest that combined TZD-ACEI therapy may be especially beneficial in improving vascular health in T2DM patients.

Our experiments are limited by the inherent difficulty of clinical observations performed in diabetic patients who are being treated with multiple drugs. The effects of prior treatment with agents that interfere with the angiotensin system were minimized by switching all ACEI/ARB-treated patients to alpha-methyldopa, as is done routinely in pregnant women. The number of diabetic patients receiving metformin therapy was similar in all three groups (n=3-4) and we did not observe any differences in any parameters in patients treated with and without metformin. Statins were used in 4-6 patients in each group but the dose of statin therapy was stable for at least 6 months prior to the study commencement and the statin dose was not changed during the study. Although no clear difference has been reported regarding the effect of intensive therapy provided with an insulin pump versus multiple insulin injections, it must be recognized that our groups were heterogeneous with respect to this modality of therapy. Nevertheless, each of the three treatment groups contained equal number of individuals treated with CSII and MDII. Other limitations of our study are the absence of a group receiving pioglitazone combined with ramipril and the period of observation (36 weeks) in the present study that is relatively short, considering that these patients have had diabetes for 6-8 years. Whether our observations would continue to be observed over longer periods of therapy and translate into significant clinical benefits remain to be determined.

In conclusion, the addition of PIO or RAM to intensive insulin therapy in T2DM further improves vascular dysfunction. PIO enhances endothelial-mediated, whereas ACE inhibition enhances endothelial-independent vasodilation. These different vascular effects, combined with the observation that PIO decreases FFA and triglycerides and increases adiponectin, while RAM reduces endothelin-1, suggest that different mechanisms underlie the vascular responses.

Acknowledgments
This work was supported by the American Diabetes Association and in part by Takeda Pharmaceuticals of North America.
References
25. Williams SB, Goldfine AB, Timimi FK, Ting HH, Roddy MA, Simonsen DC, Creager MA. Acute hyperglycemia attenuates endothelium-dependent vasodilatation in humans in vivo Circulation 1998; 97: 1695-1701
Table 1 – Changes in metabolic parameters, markers of endothelial dysfunction, and inflammation in patients with type 2 diabetes after 36 weeks of intensive insulin therapy in combination with placebo, pioglitazone, or ramipril.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Placebo Pre</th>
<th>Placebo Post</th>
<th>Pioglitazone Pre</th>
<th>Pioglitazone Post</th>
<th>Ramipril Pre</th>
<th>Ramipril Post</th>
</tr>
</thead>
<tbody>
<tr>
<td>FPG (mg/dl)</td>
<td>196±19</td>
<td>128±19</td>
<td>190±14</td>
<td>123±13</td>
<td>189±11</td>
<td>126±6</td>
</tr>
<tr>
<td>FPI (µU/ml)@</td>
<td>16±5</td>
<td>28±9</td>
<td>14±4</td>
<td>24±7</td>
<td>11±4</td>
<td>16±10</td>
</tr>
<tr>
<td>HbA1c (%)</td>
<td>9.2±0.4</td>
<td>7.2±0.1</td>
<td>9.0±0.7</td>
<td>6.9±0.3</td>
<td>9.1±0.5</td>
<td>7.0±0.2</td>
</tr>
<tr>
<td>FFA (mEq/l)</td>
<td>778±54</td>
<td>695±88</td>
<td>838±84</td>
<td>595±65*</td>
<td>753±64</td>
<td>705±73</td>
</tr>
<tr>
<td>Total Chol (mg/dl)</td>
<td>195±9</td>
<td>180±8</td>
<td>176±9</td>
<td>175±16</td>
<td>190±12</td>
<td>199±13</td>
</tr>
<tr>
<td>LDL Chol (mg/dl)</td>
<td>121±8</td>
<td>115±7</td>
<td>107±7</td>
<td>105±12</td>
<td>117±8</td>
<td>122±10</td>
</tr>
<tr>
<td>HDL Chol (mg/dl)</td>
<td>49±4</td>
<td>46±3</td>
<td>45±3</td>
<td>51±3*</td>
<td>50±4</td>
<td>51±7</td>
</tr>
<tr>
<td>VLDL Chol (mg/dl)</td>
<td>113±24</td>
<td>93±19</td>
<td>109±16</td>
<td>88±15</td>
<td>120±28</td>
<td>92±10</td>
</tr>
<tr>
<td>Trig (mg/dl)</td>
<td>146±15</td>
<td>132±18</td>
<td>148±17</td>
<td>123±11*</td>
<td>145±12</td>
<td>142±17</td>
</tr>
<tr>
<td>Adiponectin (µg/ml)</td>
<td>8.9±1.3</td>
<td>9.1±1.1</td>
<td>6.2±0.7</td>
<td>13.1±1.8*</td>
<td>7.1±0.2</td>
<td>8.6±0.3</td>
</tr>
<tr>
<td>hs-CRP (mg/l)@</td>
<td>2.5±0.3</td>
<td>2.1±0.2</td>
<td>1.7±0.2</td>
<td>1.1±0.2</td>
<td>1.5±0.2</td>
<td>1.1±0.1</td>
</tr>
<tr>
<td>TNF-α (mg/l)</td>
<td>1.8±0.2</td>
<td>1.3±0.1</td>
<td>1.6±0.1</td>
<td>1.3±0.2</td>
<td>1.9±0.4</td>
<td>1.6±0.3</td>
</tr>
<tr>
<td>IL-6 (pg/ml)</td>
<td>2.4±0.2</td>
<td>2.1±0.3</td>
<td>3.7±0.7</td>
<td>2.9±0.6</td>
<td>3.6±0.3</td>
<td>2.4±0.2**</td>
</tr>
<tr>
<td>VCAM (ng/ml)</td>
<td>574±33</td>
<td>522±38</td>
<td>556±38</td>
<td>487±32</td>
<td>590±40</td>
<td>529±32</td>
</tr>
<tr>
<td>ICAM (ng/ml)</td>
<td>278±9</td>
<td>269±8</td>
<td>247±11</td>
<td>235±10</td>
<td>257±25</td>
<td>242±29</td>
</tr>
<tr>
<td>Endothelin-1 (pg/ml)</td>
<td>1.8±0.2</td>
<td>2.0±0.3</td>
<td>2.3±0.3</td>
<td>2.1±0.4</td>
<td>2.5±0.2</td>
<td>1.1±0.2**</td>
</tr>
</tbody>
</table>

*p<0.05-0.01 pioglitazone vs. baseline; **p<0.05 ramipril vs. baseline; @p<0.05 vs. baseline for all groups
FPG = fasting plasma glucose; FPI = fasting plasma insulin; FFA = free fatty acids; Chol = cholesterol; Trig = triglycerides; hs-CRP = high sensitive C-reactive protein; TNF-α = tumor necrosis factor alpha; IL-6 = interleukin-6; VCAM = vascular cell adhesion molecules; ICAM = inter-cellular adhesion molecules
FIGURE 1 LEGEND

Figure 1A – Brachial arterial vasodilation expressed as forearm blood flow [FBF, in ml per 100 ml.min] in response to reactive hyperemia (5 minutes of cuff inflation) at baseline and following 36 weeks (Post-Tx) of combined intensive insulin therapy with placebo, pioglitazone or ramipril. There was a significant increase in the vascular response to reactive hyperemia after therapy in all three groups (**p<0.05 vs. baseline), and the magnitude of vasodilation was significantly greater in the group treated with pioglitazone versus the placebo and ramipril groups (*p<0.05)

Figure 1B – Brachial arterial vasodilation expressed as forearm blood flow [FBF, in ml per 100 ml.min] during a dose-response stimulation test with intra-brachial arterial acetylcholine (Ach) infusion at doses of 7.5, 15, and 30 µg per minute at baseline (□) and after 36 wks of treatment with intensive insulin therapy plus placebo (Δ), pioglitazone (●) or ramipril (■). There was a significant increase in the vascular response at low dose (7.5) Ach in all three groups (**p<0.05 vs. baseline). The degree of vasodilation achieved at the intermediate (15) and high (30) dose Ach infusion was significantly greater in diabetic subjects treated with pioglitazone vs. both ramipril and placebo (*p<0.05)

Figure 1C – Brachial arterial vasodilation expressed as forearm blood flow [FBF, in ml per 100 ml.min] during a dose-response stimulation test with intra-brachial arterial sodium nitroprusside (SNP) infusion at 3.0 and 10 µg per minute at baseline (□) and after 36 wks of treatment with intensive insulin therapy plus placebo (Δ), pioglitazone (●) or ramipril (■). There was a significant increase in the vascular response at the low (3) and high (10) SNP dose in all three groups (*p<0.005 vs. baseline). The degree of vasodilation achieved at the high SNP dose was significantly greater in diabetic subjects treated with ramipril vs both placebo and pioglitazone (**p<0.05)
Figure 1A: Reactive Hyperemia

![Bar graph showing FBF (ml/100 ml/min) for Placebo + Insulin, Pioglitazone + Insulin, and Ramipril + Insulin at Basal and Post-Tx.]

Figure 1B: Ach-Stimulated Vasodilation

![Graph showing FBF (ml/100 ml/min) vs. Ach (ug/min) for Placebo + Insulin, Pioglitazone + Insulin, Ramipril + Insulin, and Baseline.]

Mechanisms of Improved Vascular Dysfunction in Diabetes
Figure 1C: SNP-Stimulated Vasodilation