Insulin Reduces Plasma Arginase Activity in Type 2 Diabetes Patients

Sangeeta R. Kashyap MD*, Abigail Lara MD§, Renliang Zhang MD§, Young Mi Park MD, Ralph A. DeFronzo MD**

*Department of Endocrinology, Diabetes and Metabolism, Cleveland Clinic, §Department of Cell Biology, Lerner Institute, Cleveland Clinic, **Diabetes Division, University of Texas Health Science Center, San Antonio

Running title: Arginase activity in type 2 diabetes

Address for correspondence:
Sangeeta R. Kashyap MD
9500 Euclid Ave
Cleveland, Ohio, 44195
Email: kashyas@ccf.org

Received for publication 2 July 2007 and accepted in revised form 3 October 2007.

Additional information for this article can be found in an online appendix at http://care.diabetesjournals.org.
ABSTRACT:

Objective: We sought to determine whether dysregulation of arginine metabolism is related to insulin resistance and underlies impaired nitric oxide generation in type 2 diabetic (T2DM) patients.

Research Design and Methods: We measured plasma arginase activity, arginine metabolites and skeletal muscle NOS activity in 12 T2DM and 10 age/BMI matched non-diabetic subjects before and following 4 hour euglycemic hyperinsulinemic clamp with muscle biopsies. Arginine metabolites were determined by tandem mass spectroscopy. Arginase activity was determined by conversion of $[^{14}C]$ guanidinoarginine to $[^{14}C]$ urea.

Results: Glucose disposal (Rd) was reduced by 50% in diabetic vs. control subjects. NOS activity was 4 fold reduced in the diabetic group (107 ± 45 vs. 459 ± 100 pmol/min•mg protein, P<0.05) and failed to increase with insulin. Plasma arginase activity was increased by 50% in diabetic vs. control group (0.48 ± 0.11 vs.0.32 ± 0.12 umol/ml•hr, P < 0.05) and markedly declined in diabetic subjects with 4-h insulin infusion (to 0.13 ± 0.04 vs. basal, P <0.05). In both groups collectively, plasma arginase activity correlated positively with fasting plasma glucose (R = 0.46, P < 0.05) and HbA1c levels (R = 0.51, P < 0.02), but not with Rd.

Conclusions: Plasma arginase activity is increased in T2DM subjects with impaired NOS activity, correlates with the degree of hyperglycemia, and is reduced by physiologic hyperinsulinemia. Elevated arginase activity may contribute to impaired nitric oxide generation in type 2 diabetes and insulin may ameliorate this defect via reducing arginase activity.
INTRODUCTION:

Type 2 diabetes (T2DM) is an insulin resistant state characterized by inflammation, oxidative stress and accelerated atherosclerosis (1-3). Nitric oxide (NO) bioavailability, critical for normal vasomotor tone and function, is reduced in states of insulin resistance including T2DM (4, 5). In addition to enhancing endothelial function, NO has been shown to modulate insulin sensitivity and glucose disposal (6, 7). Activation of NO synthase (NOS) augments blood flow to insulin-sensitive tissues (i.e. skeletal muscle, liver, adipose tissue), and its activity has been shown to be impaired by hyperglycemia and insulin resistance (8, 9). Under conditions of low arginine levels, NOS is uncoupled, producing reactive oxygen species and oxidative stress in lieu of NO (10). Increased oxidative stress and concentrations of ADMA in turn further reduce NO bioavailability and are predictive of cardiovascular risk (11). Previous reports have related increased ADMA, oxidative stress and endothelial dysfunction in T2DM and obesity to the severity of insulin resistance (11, 12). Our lab (13) and others (14, 15), previously have demonstrated reduced NOS activity in patients with T2DM, and an impaired ability of insulin to increase NOS activity compared to healthy non-diabetic subjects. However, the mechanism(s) responsible for decreased NOS activity in diabetic patients has yet to be determined. This has important therapeutic implications for the development of interventions to restore NO bioavailability.

Arginase, an enzyme found predominantly in liver, kidney and red blood cells, converts L-arginine to urea and ornithine and thus decreases substrate availability for NOS to produce NO (16). There are two isoforms of arginase, both are present in human plasma, and both are increased in inflammatory conditions including pulmonary hypertension and sickle cell disease (17, 18). In addition to serving as a substrate for NOS, arginine has vasodilatory, anti-inflammatory and anti-atherosclerotic properties (19, 20). Although a recent study failed to demonstrate a beneficial effect of arginine to decrease atherothrombotic events in the setting of acute myocardial infarction (21), this may have been explained by accelerated arginine catabolism secondary to increased arginase activity. Our objective was to measure arginase activity in plasma of subjects with uncomplicated T2DM and age/BMI matched non-diabetic controls and to examine the effect of physiologic hyperinsulinemia on plasma arginase activity.

STUDY DESIGN AND METHODS:

Subjects. Twelve T2DM subjects (age = 50 ± 4 y, 5M / 7F, BMI = 31.1 ± 1.0, HbA1c = 6.8 ± 0.9%, fasting glucose = 135 ± 14, systolic blood pressure 136 ± 3, diastolic blood pressure 78 ± 3 mmHg), and 10 healthy (age = 45 ± 4 y, 6M/ 4F, BMI = 29.5 ± 0.9, HbA1c = 4.9 ± 0.2%, FPG = 92 ± 2 mg/dl, SBP 121 ± 4, DBP 72 ± 2 mmHg) age- and weight-matched non-diabetic control subjects participated and were described in a previous report (13). T2DM subjects had elevated total cholesterol (198 ± 11 vs. 173 ± 8 mg/dl, p = 0.03) and triglyceride levels (206 ± 30 vs. 97 ± 15 mg/dl, p < 0.01) compared to non diabetic subjects. Normal glucose tolerance was confirmed in all control subjects by a 75-g oral glucose tolerance test using ADA criteria. The diabetic group was in reasonably good glycemic control, as reflected by mean HbA1c = 6.8%, and was treated with diet (n=9) or sulfonylureas (n=3). No diabetic subject had received treatment with metformin, thiazolidinediones, or insulin. The mean duration of diabetes was less than 2 years. Five diabetic subjects had normal fasting glucose and were diagnosed...
with an oral glucose tolerance test (2-hour plasma glucose > 200 mg/dl). Oral antidiabetic agents were discontinued 24 hours before the study. Other than diabetes, none of the subjects had any medical problems and none were taking any medications (other than sulfonylureas in 3 diabetics) known to affect glucose metabolism. None of the participants smoked or were on hormonal replacement therapy. The protocol was approved by the Institutional Review Board of the University of Texas Health Science Center at San Antonio.

Study Design. All studies were conducted in the General Clinical Research Center of the University of Texas Health Science Center at San Antonio and began at 0700 hours after a 12-hour overnight fast. Disposal of glucose, plasma arginase and NOS activity was determined in response to physiologic infusion of insulin in both groups by euglycemic hyperinsulinemic clamp testing protocol described previously (13). A prime (25 µCi)- continuous infusion (0.25 µCi/min) of 3-[3H]-glucose was started, and 2 hours (3 hours for diabetics) was allowed for isotopic equilibration. Sixty minutes prior to the start of the insulin clamp (basal), a percutaneous biopsy of the vastus lateralis muscle was obtained for determination of NOS activity and protein content (13). Thirty minutes prior to the start of insulin, 4 baseline blood draws were performed 5-10 minutes apart for glucose, insulin, free fatty acid levels. The last baseline blood (time 0) was determined for arginase activity, ICAM and VCAM levels. At the end of the tracer equilibration period, a primed- continuous infusion 80 mU/m² per minute of insulin was started along with a variable infusion of 20% glucose, to maintain fasting glucose values (100mg/dl for diabetic subjects). At 30 and 240 minutes after the start of the insulin infusion, repeat vastus lateralis muscle biopsies were obtained from a site 4 cm distal to the first. At time 0 and at 180 and 240 min after the start of insulin, plasma was obtained for ICAM-1 and VCAM determination. The insulin infusion was continued for a total of 240 minutes.

Methods. Plasma glucose specific activity was determined using barium hydroxide/zinc sulfate extracts of plasma. Plasma insulin concentration was determined by radioimmunoassay (Diagnostic Products, Los Angeles, CA). NOS activity produced by skeletal muscle was measured by the NOS Detect assay kit (Stratagene, LaJolla, CA) through the conversion of [14C]L-arginine (Perkin Elmer Life Sciences) to [14C]L-citrulline, according to the manufacturer’s instructions (13). NOS activity data were normalized by the absolute amount of protein present. For measurement of arginine metabolites, including ADMA, plasma was subjected to cation exchange solid-phase extraction and analyzed by HPLC tandem mass spectroscopy (17). The coefficients of variation for intersample and intrasample variations tested with a pooled plasma sample were less than 3% for all analytes. The detection limit for dimethylarginines was 0.04 µM. Nitrate, the stable metabolite for NO, was detected by the classical Greiss method (18).

Arginase activity assay. Plasma arginase activity was measured by the conversion of (14C)guanidinoarginine to 14C urea. Initiation of the arginase assay was performed as described by Russell and Ruegg (22). After a 30 minute incubation at 37 °C, the reaction was terminated by heating at 100 C for 3 min, and the reaction mixture was incubated for an additional 45 min at 37°C after addition of potassium phosphate buffer and urease, as described previously (22). Liberated 14CO2, trapped as Na214CO3, was quantified by scintillation counting. One unit of arginase activity is defined as the amount of enzyme that produces one micromole of urea per minute at 37 °C.
Arginase activity in type 2 diabetes

Arginase isoform protein concentration. The concentration of arginase isoform present in human plasma was determined by a direct ELISA using an anti-arginase I and II polyclonal antibody raised in goat (Santa Cruz Biotechnology, Ca) with appropriate secondary antibodies labeled to horseradish peroxidase.

Calculations. The rate of insulin-stimulated glucose disposal was calculated by adding the rate of residual hepatic glucose production to the cold glucose infusion rate (10, 13).

Statistical Methods. All data was normalized prior to analyzing. All data are presented as the mean ± SE with some data demonstrating 95% confidence intervals shown between brackets []. Differences between control and diabetic groups were compared using the unpaired 2-tailed t test with statistical significance noted by P < 0.05. Differences between basal and insulin-stimulated values within groups were compared using the paired t-test. Correlation analysis was performed by the Pearson product moment method using Stat View software (version 4.0; SAS Inc., Cary, North Carolina, USA).

RESULTS:

Euglycemic Insulin Clamp. During insulin infusion similar steady state (time 210-240 min) plasma insulin concentrations were obtained in diabetic and control groups (133 ± 7 vs. 127 ± 8 uU/ml, P = NS). The rate of insulin-stimulated glucose disposal (Rd) was reduced in diabetic compared to control subjects (5.2 ± 0.4, [95% CI 4.9, 5.6] vs. 9.0 ± 0.9, [7.2, 11.2] mg/kg-min, p < 0.01). Basal (time 0) plasma levels of VCAM and ICAM were markedly higher in diabetic vs. control subjects (812 ± 33, [95% CI 692, 926] vs. 672 ± 22, [684, 764] ng/ml), (232 ± 26, [95% CI 190, 279] vs. 155 ± 8, [159, 187] ng/ml); (P < 0.05) respectively (13).

NOS activity. Basal skeletal muscle NOS activity (time -60) was reduced in diabetic vs. control subjects (107 ± 45, [95% CI 21.6, 188] vs. 459 ± 100, [120, 823] pmol/min-mg protein, p<0.05). In response to hyperinsulinemia, NOS activity increased almost 2-fold in the control group after 4 hours (757 ± 244, [95% CI 305, 1564] pmol/min-mg protein, p<0.05 vs basal) but failed to increase in diabetic (105 ± 38, [12, 165] pmol/min-mg protein, p < 0.01 vs. control) subjects (13). Basal NOS protein content in muscle was similar in non-diabetic and type 2 diabetic subjects and did not change significantly during the euglycemic insulin clamp (data not shown) (13).

Arginine metabolites. Plasma arginine levels (time 0) were similar in diabetic and control groups (22 ± 4, [95% CI 23, 36] vs. 29 ± 6, [18, 34] uM, P = 0.32), respectively. Plasma ornithine concentrations were higher in diabetic subjects (120 ± 6, [95% CI 115, 135] vs. 95 ± 8, [73, 120] uM, P < 0.05). The arginine to ornithine ratio, a marker of arginase activity, tended to be lower in the diabetic group (0.18 [95% CI 0.10, 0.25] vs. 0.30, [0.2, 0.34], P < 0.1), suggesting increased arginase activity in this group. Only asymmetric dimethylarginine (ADMA), as compared to other methylated arginines (SDMA, MMA), was higher in diabetic vs. control subjects (0.48 ± 0.04 [95% CI 0.42, 0.62] vs. 0.34 ± 0.04, [0.28, 0.52] uM, P < 0.05). Moreover, the ratio of arginine to ADMA, a non-traditional cardiovascular risk marker was decreased in diabetic vs. control group (57 ± 6 [95% CI 35, 60] vs. 78 ± 5, [60, 88] uM, P < 0.05). Plasma nitrate levels were significantly higher in control vs diabetic subjects (25 ± 4 vs. 14.6 ± 3 uM, P <0.05).

Plasma arginase isoform protein concentration. Plasma concentrations of arginase I (0.25 ± 0.08 vs. 0.31 ± 0.10 ng/ml, P = NS) and arginase II (0.16 ± 0.05 vs. 0.21 ± 0.09 ng/ml, P = NS) were similar in diabetic and control groups, respectively. No change in isoform concentrations were observed following 4 hours of insulin infusion.
Arginase activity in type 2 diabetes

Plasma arginase activity (Figure 1). Basal plasma arginase activity (time 0) was significantly higher in diabetic vs. control subjects (0.48 ± 0.11, [95% CI 0.37, 0.59] vs. 0.32 ± 0.12, [0.25, 0.40] umol/ml/hr, p < 0.05) and declined markedly to 0.13 ± 0.04, [95% CI 0.1, 0.18] during the 4 hour insulin infusion (time 240). No decline in arginase activity was observed in the control group (0.24 ± 0.10, [0.14, 0.35] P = NS).

Relationship between metabolic parameters and plasma arginase activity (Figure 2). Basal plasma arginase activity in both groups combined correlated linearly with fasting plasma glucose concentration (R = 0.46, P < 0.05) and HbA1c levels (R = 0.51, P < 0.05) (fig 4). No correlation was observed with Rd, BMI or fasting plasma insulin or free fatty acid levels.

DISCUSSION:

Dysregulation of arginine metabolism may underlie reduced NO bioactivity in T2DM. The novel findings of the present study that deserve comment are: (i) plasma arginase activity is increased in insulin resistant T2DM subjects with impaired muscle NOS activity as compared to age/weight matched non-diabetic subjects; (ii) increased plasma arginase activity is correlated with the severity of hyperglycemia, and (iii) short term (4-hours), physiologic hyperinsulinemia in T2DM subjects markedly reduces the elevated plasma arginase activity, indicating an important regulatory effect of insulin on arginase enzymatic activity. Quantization of plasma metabolites involved in arginine metabolism demonstrated increased ornithine levels and a reduced arginine-to-ADMA ratio in T2DM vs. non-diabetic control subjects, providing further support for increased arginase activity in T2DM.

Arginine is an exclusive substrate for nitric oxide synthase. Thus understanding its metabolism in vascular health and disease is critical (23-25). Some studies have demonstrated a beneficial effect of arginine supplementation in patients with hypertension, angina and erectile dysfunction (26), whereas a clinical trial with 6 months of arginine supplementation in patients with acute myocardial infarction (21) failed to demonstrate any vascular benefit. Increased arginine catabolism may provide an explanation for this. Although plasma arginine concentrations, determined by mass spectrometry, were relatively similar between diabetic and non-diabetic subjects in our study, conversion of arginine towards the NOS pathway was different. Elevated plasma ornithine levels (120 ± 6 vs. 95 ± 8 uM, P < 0.05) and reduced arginine to ornithine ratio in diabetic vs. control patients (0.18 vs. 0.30, P < 0.1) suggests increased metabolism of arginine towards a pathway that counteracts the nitric oxide synthase pathway (15, 23-25). Arginine and ornithine compete for the same transport system for cellular uptake (23-25).

Reduced NO bioavailability, endothelial dysfunction, and increased oxidative stress, have been demonstrated in individuals with type 2 diabetes mellitus (4, 5, 16, 17, 30). Insulin resistance, a prominent feature of our type 2 diabetic cohort, is thought to parallel the development of endothelial dysfunction, suggesting that the two may share a common pathogenic mechanism (30). At the cellular level, insulin
Arginase activity in type 2 diabetes resistance is characterized by impaired insulin-stimulation of phosphoinosital-3-kinase activity and subsequent downstream signaling of Akt (31). In metabolically active tissues, Akt phosphorylation is required for GLUT 4 translocation. In vascular endothelial cells, Akt has been shown to modulate generation of NO (32). Inhibition of insulin signaling by wortmannin (33) and hyperglycemia (34) reduces NO generation. Altered Akt pathway in humans has been linked to inactivation of dihydropteroine reductase (DHR) and GTP-cyclohydrolase that results in reduced BH4 (co-factor for NOS) availability, while promoting eNOS decoupling and peroxynitrite generation (30). Impaired insulin signaling and chronic hyperglycemia provide a common mechanism for reduced NO generation and decreased glucose disposal in insulin resistant states. This could explain our previous observation of severely reduced NOS activity during both basal and insulin-stimulated conditions in this cohort of T2DM subjects.

Another important mechanism that could explain reduced NO generation is reduced substrate concentration brought about by accelerated enzymatic conversion of arginine to ornithine by arginase. Consistent with this, arginase has been shown to reduce the vasodilatory properties of NOS (11, 12). Arginase is an intracellular enzyme that appears in plasma only after cell damage or death. The type 1 isoform of arginase predominantly is located in liver and kidney, while the type 2 isoform predominantly is found in endothelial cells and can be induced in many cell types by a variety of inflammatory cytokine factors (35). Thus, chronic, low grade inflammation and liver disease are potential sources of elevated arginase activity in T2DM. In the present study, we found a similar and approximately equal distribution of the type 1 and 2 isoforms in diabetic and control subjects. However, in diabetic erectile dysfunction, increase expression and activity of arginase II was found, suggesting a potential role of arginase II in negative regulation of NO production (29). Subjects with diabetes in this study had no evidence of microvascular or macrovascular complications, were treated with diet alone or sulfonylurea, therapy, and demonstrated reasonably good glycemic control (HbA1c = 6.8%). Not unexpectedly, these diabetic individuals demonstrated significant insulin resistance and had many features of metabolic syndrome including increased adiposity, dyslipidemia, hypertension and pro-inflammatory milieu including hyperglycemia and increased circulating soluble cellular adhesion molecules. Diminished arginase activity was not associated with reduced insulin-stimulated whole body glucose disposal or increased fasting plasma insulin concentration. However, reduced arginase activity was correlated with the level of glycemic control (fasting plasma glucose concentration and HbA1c levels). Consistent with this, studies have shown that hyperglycemia increases arginase activity in renal cortex (36). Recent evidence in human endothelial cells has identified a regulatory effect of the RhoA/ROCK pathway on increasing arginase activity (37). In apo E null mice, higher arginase (isoform II) activity in the atherosclerotic aortas was associated with higher RhoA protein levels, suggesting a role of RhoA in upregulation of arginase activity (37). It is tempting to speculate that hyperglycemia directly or indirectly stimulates this pathway to enhance arginase activity, and that insulin may ameliorate this effect.

Insulin has been shown to have vasodilatory effects, as well as anti-inflammatory properties (1, 4). The insulin signaling cascade mediates insulin action in insulin responsive tissues and has been shown to stimulate NO generation in vascular smooth muscle and skeletal muscle
Arginase activity in type 2 diabetes

In our study, physiologic hyperinsulinemia, while maintaining euglycemia, markedly decreased the elevated plasma arginase activity in diabetic but not in control subjects. Several possible explanations could explain these results: (i) insulin inhibits arginase activity only when the activity of the enzyme is increased, as in our type 2 diabetic subjects; (ii) during the insulin clamp, the plasma glucose concentration is allowed to decline to baseline, thereby removing the stimulatory effect of hyperglycemia on plasma arginase activity; (iii) during the insulin clamp, restoration to normal of some other metabolic factor(s), i.e. elevated plasma free fatty acid levels, results in reduced plasma arginase activity.

In summary (Figure 3), insulin resistance in T2DM may contribute to reduced NOS activity by generation of methylated arginine, while hyperglycemia in type 2 diabetic individuals contributes to increased arginase activity and reactive oxygen species which further inhibit NOS activity. Based upon this scenario, inhibition of pathways that reduce nitric oxide bioavailability could prove to be an important target to enhance endothelial function in type 2 diabetes. Other therapeutic modalities, including intensive control of hyperglycemia with insulin, should be assessed for their ability to increase arginine bioavailability and block arginase activity.

ACKNOWLEDGMENTS:
We are grateful to the skilled GCRC nurses at the Audie Murphy VA Hospital Medical Center in San Antonio, Texas for carrying out the metabolic studies. Authors are also indebted to Dr. Stanley Hazen for his expertise and guidance with HPLC mass spectroscopy work. This work was supported in part by the National Institutes of Health, National Center for Research Resources [NCRR], Multidisciplinary Clinical Research Career Development Programs Grant 5K12RR023264, NIH grant DK-24092, and GCRC Grant M01-RR-01346.
REFERENCES:

Fig 1: Plasma arginase activity in diabetic and control subjects during the basal (closed squares) and insulin stimulated (open squares) states. Arginase activity is expressed as umol/ml•hr.
Fig 2a,b: Correlation analysis between plasma arginase activity (x-axis) and fasting plasma glucose (mg/dl) and HbA1c (%) levels for control and diabetic groups combined.

Figure 2

- **a**

 Fasting glucose mg/dl

 - $R = 0.46$
 - $P < 0.05$

- **b**

 HBA1C (%)

 - $R = 0.51$
 - $P < 0.02$
Arginase activity in type 2 diabetes

Fig 3: Schematic representation of the effects of hyperglycemia and insulin resistance on nitric oxide generation. We propose that hyperglycemia is associated with increased arginase activity, leading to decreased arginine availability. Insulin resistance in type 2 diabetic patients is associated with decreased nitric oxide synthase activity. Impaired activity of nitric oxide synthase and increased arginase activity contribute to decreased nitric oxide generation and result in endothelial dysfunction, inflammation, insulin resistance, and accelerated atherosclerosis.