A Randomized Trial Comparing Continuous Subcutaneous Insulin Infusion of Insulin Aspart versus Insulin Lispro in Children and Adolescents with Type 1 Diabetes

Stuart A. Weinzimer, MD
Christine Ternand, MD
Campbell Howard, MD
Cheng-Tao Chang, PhD
Dorothy J. Becker, MB, BCh
Lori M.B. Laffel, MD, MPH.

For the Insulin Aspart Pediatric Pump Study Group

1Yale University School of Medicine, New Haven, Connecticut; 2University of Minnesota Physicians, Minneapolis, Minnesota; 3Novo Nordisk Inc., Princeton, New Jersey; 4Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania; 5Joslin Diabetes Center, Boston, Massachusetts.

Running title: Pediatric Insulin Aspart and Lispro CSII

Corresponding Author:
Stuart A. Weinzimer, MD
Yale University School of Medicine
P.O. Box 208064
333 Cedar St.
New Haven, CT 06520-8064
stuart.weinzimer@yale.edu

Received for publication 17 July 2007 and accepted in revised form 25 October 2007.
ABSTRACT

Objective: The safety and efficacy of insulin aspart in continuous subcutaneous insulin infusion (CSII) was compared to that of insulin lispro CSII in children and adolescents with type 1 diabetes.

Research Design and Methods: Children and adolescents 4-18 years of age with diagnosed type 1 diabetes ≥1 year previously treated with insulin analog CSII ≥3 months were randomized 2:1 to 16 weeks of insulin aspart CSII (n=198) or insulin lispro CSII (n=100) in this open-label, parallel-group, multicenter study. Standard diabetes safety and efficacy parameters were assessed.

Results: Baseline demographics, subject characteristics, and diabetes history were similar between treatment groups. After 16 weeks of treatment, insulin aspart CSII was non-inferior to insulin lispro CSII as measured by change in HbA1c from baseline (aspart, -0.15±0.05%; lispro, -0.05±0.07%; 95% CI of the treatment difference, [-0.27, 0.07]; p=0.241). No significant differences between treatment groups were observed in fasting plasma glucose (FPG), hyperglycemia, and rates of hypoglycemic episodes. At Week 16, 59.7% of subjects in the aspart group and 43.8% of subjects in the lispro groups achieved age-specific ADA HbA1c goals (<8.5% for subjects < 6 years; <8% for subjects 6-18 years) (p=0.040, corrected for baseline). Daily insulin dose (U/kg) was significantly lower at Week 16 for subjects treated with aspart, as compared to those treated with lispro (0.86±0.237 vs. 0.94±0.233, p=0.018).

Conclusions: Insulin aspart was as safe and effective as insulin lispro for use in CSII in children and adolescents with type 1 diabetes.

CLINICALTRIALS.GOV REGISTRATION ID. NCT00097071
Intensive management of diabetes can delay the onset/progression of microvascular and cardiovascular complications associated with type 1 diabetes (1). Continuous subcutaneous insulin infusion (CSII) therapy is the method of intensive insulin therapy that most closely mimics physiological insulin release allowing for administration of 24-hour adjustable basal rates and flexible mealtime bolus doses. CSII provides increased convenience and flexibility to patients with type 1 diabetes, enabling insulin delivery modes to be customized to meet the varying daily requirements of the individual patient. These features may benefit young children in particular who may have unpredictable eating and exercise patterns. Recently, an evidence-based consensus statement endorsed by the American Diabetes Association (ADA) and European Association for the Study of Diabetes (EASD) concluded that CSII (in conjunction with proper support measures) may be appropriate for children of all ages (2).

Insulin pump treatment has become increasingly popular with children and adolescents in recent years due to technological advances in pumps and their associated catheters and infusion sets. Although there are conflicting comparison studies of the added benefit of CSII versus multiple-daily-injections (MDI) in children, there are reports of HbA1c decreases averaging ~0.5% and a reduction in the frequency of severe hypoglycemia in pediatric subjects treated with CSII compared with their prior therapy or a group receiving MDI therapy (3-12).

Rapid-acting insulin analogs (insulin apart (NovoLog®), insulin lispro (Humalog®), and insulin glulisine (Apidra®)) are indicated for CSII use in adults (13). The pharmacokinetic and pharmacodynamic properties of insulin analogs (solubility, uniform absorption, and rapid onset of action and short duration of action compared with regular human insulin (HI)) make them well suited for use in CSII. In adults with type 1 diabetes, insulin aspart and insulin lispro CSII have been shown to be as safe and effective as MDI therapy (14-17). Notably, the ADA and EASD recommended use of rapid-acting insulin analogs for CSII in pediatric subjects based upon the modest HbA1c improvements versus regular HI observed in adult studies (2).

The increased popularity of insulin analog CSII treatment in pediatric patients has occurred despite the lack of data from large, randomized clinical trials in this population. Furthermore, it is unclear whether there are any notable differences in efficacy, safety, or tolerability between rapid-acting insulin analogs administered via CSII in children and adolescents. Although several studies have compared insulin analog CSII versus MDI therapy, and insulin aspart versus insulin lispro CSII in adults (18,19), this is the first large study conducted to date evaluating and comparing the safety and efficacy of two analogs in CSII (insulin aspart vs. insulin lispro) in children and adolescents with type 1 diabetes.

RESEARCH DESIGN AND METHODS

This was a 16-week, open-label, multi-center, parallel-group study. Children and adolescents with type 1 diabetes were randomized in a 2:1 manner to receive either insulin aspart or insulin lispro by CSII via external pump with changes in reservoir, infusion set, and infusion site at least once every 48 hours. Subjects were stratified by age (3-5 years, 6-11 years, and
12-18 years) prior to randomization to ensure that the two treatment groups had similar proportions of young children, children, and adolescents, respectively. This study was conducted at 45 sites in the US in accordance with the Declaration of Helsinki and ICH Good Clinical Practice guidelines (20, 21). Subjects 18 years of age signed informed consent forms. For subjects <18 years of age, the caregiver provided written informed consent (including HIPAA requirements and child assent) prior the initiation of any trial-related activities.

This trial enrolled 298 subjects with type 1 diabetes ≥1 year and treated ≥3 months with CSII therapy using either insulin aspart or insulin lispro, who were 3-18 years of age, and had an HbA1c value at screening ≤10.0%. Subjects were excluded from the study if they had impaired hepatic or renal function, abnormal thyroid function, proliferative retinopathy, a history of severe hypoglycemia, a developmental disorder, or had received another investigational drug within 1 month prior to the trial. Subjects using diluted insulin, or who had basal rates ≤0.05 U/hr or basal rates that were not stable 2 weeks prior to screening, were excluded. Women were excluded if they were pregnant, breastfeeding, or not using contraception.

Subject-specific basal rates and pre-mealtime bolus doses of insulin were selected at the discretion of the Investigator. Self-monitored plasma glucose (SMPG) and dose diary entries were reviewed at each visit and doses were adjusted at the discretion of the Investigator.

Efficacy assessments. The primary endpoint was change in HbA1c from baseline to the end of the study. HbA1c measurements were obtained at baseline (Week 0) and at Weeks 8, 12, and 16, and were analyzed by a central laboratory (Medical Research Laboratories International, LLC, Highland Heights, KY). Fasting plasma glucose (FPG), eight-point SMPG profiles (readings immediately before and 2 hours after meals, at bedtime, and at 2 AM), and fasting lipid measurements were obtained at Weeks 0 and 16. Eight-point SMPG measurements were recorded in a diary by the subject 2 days prior to the Week 0 and Week 16 study visits. Total daily insulin doses were recorded in the diary for 2 days prior to each office visit (Weeks 0, 2, 4, 8, 12, and 16). Weight was measured at each office visit.

Safety Assessments. Safety was assessed by physical examination findings, clinical laboratory evaluations, and reporting of adverse events (AEs), hypoglycemic and hyperglycemic episodes, and diabetic ketoacidosis (DKA) (classified as mild, moderate, or severe according to ADA Clinical Practice Guidelines) (22). Subjects/caregivers were instructed to record the date and time of hypoglycemic symptoms along with the time of the last meal, time and type of last insulin dose, and a plasma glucose value (when available). In this study, minor hypoglycemic episodes were defined as plasma glucose values <56 mg/dL with or without symptoms that were self-treated. Major hypoglycemia was defined as an event with severe central nervous system symptoms consistent with hypoglycemia in which the subject was unable to treat him/herself and had a PG <56 mg/dL and/or reversal of symptoms after food intake, or administration of glucagon or intravenous glucose. Hyperglycemia was defined as an event with a plasma glucose value >300 mg/dL and was recorded as an AE by the Investigator. Subjects were instructed on the signs and symptoms of infusion site
reaction and were instructed to record all infusion site reactions in their diary. Diary information (SMPG profiles, episodes of hypoglycemia, hyperglycemia, and DKA, infusion site reactions, and AEs) was reviewed at each visit.

Statistical analysis. The primary and secondary efficacy analyses were performed on the intent-to-treat population (ITT) (all subjects who received at least one dose of study drug after randomization and had a post-baseline efficacy assessment). End-of-study values represent mean values for the ITT population using a last observation carried forward (LOCF) imputation approach. The safety population included all subjects receiving at least one dose of study drug.

Comparisons of the HbA₁c change-from-baseline values between treatment groups were made using an ANCOVA model with treatment and age group as the fixed effects, and baseline HbA₁c as covariate. Ninety-five percent confidence intervals (CI) were constructed. Change-from-baseline HbA₁c values are presented as least squared (LS) mean±SE values. The primary analysis was the test for non-inferiority of aspart to lispro in terms of the change from baseline in HbA₁c to the end of treatment. Non-inferiority of aspart to lispro treatment was achieved if the upper limit of the 95% CI of the difference between treatments (LS mean aspart – LS mean lispro) was no more than 0.4%. Descriptive statistics (and ANCOVA comparisons between treatment groups) were provided for the primary and secondary efficacy endpoints. The percentages of subjects that achieved age-specific HbA₁c goals were analyzed using the following 2006 ADA HbA₁c goals: <8.5% for subjects <6 years of age and <8% for subjects 6-18 years of age (23). Statistical significance was defined as p≤0.05.

BMI was calculated from height and weight measurements obtained at screening and at the end of the study, and National Center for Health Statistics BMIAGE growth curves (BMIAGE) were used to calculate BMI scores adjusted by age and sex (Z-BMI scores) (24). Z-BMI scores are the number of standard deviations above or below the mean BMI and are commonly used for comparisons between pediatric treatment groups since the “normal” BMI varies by age and sex in children and adolescents.

RESULTS

Subjects. Baseline demographics and subject characteristics of the 298 enrolled subjects (aspart, n=198; lispro, n=100) were similar between treatment groups (Table 1). The ITT population included 197 subjects in the insulin aspart group and 99 subjects in the insulin lispro group. Overall, the study completion rate was 93%.

Efficacy. In the ITT population, observed mean HbA₁c values were 8.0±0.94% and 8.2±0.84% at baseline and were 7.9±0.93% and 8.1±0.85% at the end of the study (LOCF) for the insulin aspart and insulin lispro, respectively. The change in HbA₁c from baseline at the end of the study was -0.15±0.05% in the insulin aspart group and -0.05±0.07% in the insulin lispro group. Insulin aspart CSII was demonstrated to be non-inferior to insulin lispro CSII (as measured by change in HbA₁c from baseline to the end-of-study) since the upper limit of the 95% CI for the treatment difference did not exceed 0.4 (95% CI [-0.27, 0.07]).

At baseline, 50.3% of the subjects in the aspart group were at age-specific HbA₁c goals, as compared to 40.4% of subjects in the lispro group (p=0.138). At Week 16, 59.7% of subjects in the aspart group and
43.8% of the subjects in the lispro group achieved ADA age-specific recommendations for HbA1c (p=0.040, corrected for baseline percentage).

Mean fasting plasma glucose values were comparable between treatments at baseline (aspart, 170.8±77.39 mg/dL; lispro, 177.8±67.61 mg/dL, p=0.455) and at the end of the study (aspart, 166.5±67.28 mg/dL; lispro, 180.2±82.58 mg/dL, p=0.113). Self-measured 8-point plasma glucose profiles showed similar patterns between treatments at baseline and at the end of the study (Figure). The 8-point SMPG profiles collected prior to Week 0 and Week 16 showed a similar pattern for both treatment groups. Plasma glucose values were generally highest 2 hours after breakfast for both insulin aspart and insulin lispro. In general, Week 16 values were lower than Week 0 values. No statistically significant differences between treatment groups in mean SMPG values were observed at any of the 8 timepoints at Week 16.

All mean lipid values were within normal limits and were not significantly different between the insulin aspart and insulin lispro treatment groups at baseline and at the end of the study.

As expected for a pediatric trial, mean body weight increased from baseline for both treatment groups during the trial but was comparable between treatment groups (aspart, 1.8±2.07 kg; lispro, 1.6±2.09 kg, p=0.387). At the end of the study, mean Z-BMI was 0.75±0.768 in the insulin aspart groups and 0.72±0.780 in the insulin lispro group, a mean change in Z-BMI from baseline of 0.03±0.241 and -0.02±0.204, respectively. The difference between treatments in the change in Z-BMI score from baseline at the end of study was not significant.

The mean weight-adjusted daily insulin dose at Week 0 was similar between treatment groups (insulin aspart, 0.89±0.259 U/kg; insulin lispro: 0.93±0.247 U/kg, p=0.344). By Week 16, the mean weight-adjusted daily dose was significantly lower in the aspart group, as compared to lispro (0.86±0.237 U/kg and 0.94±0.233 U/kg, respectively, p=0.018).

Hypoglycemia, Hyperglycemia and DKA.
The incidence and rates of hypoglycemic episodes are presented in Table 2. Rates of minor hypoglycemic episodes were similar between the two treatment arms, and the rate of major hypoglycemic episodes was also similar between treatment groups with a relatively small but similar percentage of subjects reporting at least one major hypoglycemic event during the study period (9.6% and 8.0% in the aspart and lispro groups, respectively). Rates of nocturnal hypoglycemic events were also similar between treatment groups.

Hyperglycemic episodes were reported as adverse events for 21 (11%) subjects in the CSII insulin aspart group compared with 17 (17%) subjects in the CSII insulin lispro group. Most of the events were classified as mild or moderate. During the study, a total of three episodes of diabetic ketoacidosis were reported by three subjects (1 in the aspart group, 2 in the lispro group) that met the study criteria for DKA (21). All subjects with DKA recovered and went on to complete the study.

Safety. Adverse events were reported by 82% (162/198) of subjects in the aspart CSII group (498 events) and 83% (83/100) of the subjects in the lispro treatment group (293 events). The numbers and types of
reported adverse events were similar for the two treatment groups. The five most frequently-occurring AEs for the aspart and lispro groups, respectively, were: upper respiratory tract infection (18%, 20%), hyperglycemia (11%, 17%), nasopharyngitis (10%, 10%), pharyngolaryngeal pain (7%, 11%), and vomiting (8%, 10%). The majority of AEs were mild in severity (aspart, 82%; lispro, 77%). Thirty (15%) subjects in the aspart group and 16 (16%) subjects in the lispro group experienced AEs that were considered to have a probable or possible relationship to the study drug by the Investigator. Only one subject withdrew from the study due to an AE (persistent hyperglycemia due to an infusion set problem by a subject in the lispro group).

Seven serious adverse events (SAEs) were reported for six subjects (5 (2.5%) subjects in the aspart group and 1 (1.0%) subject in the lispro group). Hypoglycemic seizure, DKA, hypoglycemia with accidental overdose of insulin, hyperglycemia and skin lacerations were SAEs reported by subjects in the aspart treatment group; hypoglycemia was the SAE reported by one subject in the lispro group. All subjects recovered and none of these subjects withdrew from the study as a result of their SAE.

The following adverse events were classified as infusion site reactions: catheter site-related reaction, infusion site erythema, induration, irritation, pruritus, rash, reaction, swelling, or vesicles. The percentages of subjects that reported an infusion site reaction were similar between groups (aspart: 17%, lispro: 21%, p=0.43).

Treatment with either insulin aspart CSII or insulin lispro CSII did not appear to have any adverse effects on physical examination findings, vital signs, hematology, biochemistry or urinalysis parameters.

CONCLUSIONS
Results from this study indicate that insulin aspart CSII is as effective as insulin lispro CSII in children and adolescents 4-18 years of age. Mean FPG, SMPG and HbA₁c values were comparable from baseline to the end of the study for both treatment groups. This finding was not surprising considering subjects enrolled in the trial were not naïve to CSII treatment with insulin analogs, as 44% of subjects had used insulin aspart and 56% had used insulin lispro prior to study entry with a mean duration of CSII use of 121 and 132 weeks, respectively.

This study was not a treat-to-target study with defined dosing guidelines. Investigators reviewed subject diaries and subject-specific basal and bolus doses were determined at their discretion. For this reason, the baseline and end of study data provide insight into the safety and glycemic control achieved with insulin analog CSII therapy in children and adolescents in a “real-world” clinical setting.

Notably, the weight-adjusted mean daily dose of insulin aspart was significantly less than insulin lispro. Although subjects in the aspart group used less insulin, they were able to achieve comparable levels of glycemic control at the end of the study. Mean total daily dose of insulin aspart at the end of the study (0.86 U/kg) was similar to the dose reported at the end of another insulin aspart CSII study of 16 subjects 8-21 years of age (0.9 U/kg) (25).

Nocturnal hypoglycemia is a serious concern for the pediatric population. The rates of major nocturnal hypoglycemic episodes or episodes of PG ≤36 mg/dL were
very low in this study for both treatment groups, consistent with observations from an earlier CSII study in adults (18). Most hypoglycemic events occurred during the daytime, more consistent with the impact of daytime exercise/activity or inaccurate bolus dosing than with improper basal rate. Insulin aspart has previously been shown to be associated with lower risk of symptomatic, major, or minor hypoglycemia compared with MDI in adults (14). In this study, the rates of all classifications of hypoglycemia were comparable between insulin aspart and insulin lispro, suggesting a similar hypoglycemic risk for both analogs when used in CSII for pediatric subjects.

In this study, the incidence of hyperglycemia for both treatment groups was lower (aspart, 11%; lispro, 17%) than in previous adult studies of insulin aspart CSII (18,26). However, the lower rate of hyperglycemic episodes in this study may be due to the fact that Investigators had to report hyperglycemia as an adverse event and not merely as any instance when PG>300 mg/dL.

In conclusion, insulin aspart CSII provides glycemic efficacy non-inferior to that of insulin lispro CSII at a significantly lower total daily dose, with no increased risk of hypoglycemia over 16 weeks of therapy in pediatric subjects familiar with pump therapy. Overall, insulin aspart CSII was shown to be safe and tolerable in pediatric subjects 4-18 years of age. The results of this study confirm that insulin analog CSII therapy is efficacious in appropriately selected children and adolescents with type 1 diabetes. Insulin analog CSII therapy provides a safe and effective insulin delivery option for pediatric patients with type 1 diabetes and their caregivers who desire the convenience and flexibility associated with CSII.

ACKNOWLEDGMENTS
We would like to acknowledge the patients and their caregivers who participated in this trial and the following Principal Investigators: Javier Aisenberg, Holley Allen, Yaw Appaigyei-Dankah, Rajat Bhushan, Clifford Bloch, Bruce Bode, Bruce Boston, Rosalind Brown, Monina Cabrera, H. Peter Chase, Kevin Corley, Marsha Davenport, Larry Deeb, Paul Desrosiers, Joan DiMartino-Nardi, Pavel Fort, Sherry Franklin, Richard Guthrie, Daniel Hale, Khalid Hasan, Christopher Houk, Stephen Kemp, Wendy Lane, John Liljenquist, Jadranka Popovic, Gnanagurudasan Prakasam, Teresa Quattrin, Barry Reiner, Kenneth Rettig, Judith Ross, Dara Schuster, Sherwyn Schwartz, Dorothy Shulman, Leslie Soyka, Martha Spencer, Svetlana Ten, Bruce Trippe, Eva Tsalikian, Figen Ugrasbul, Emily Walvoord, Nancy Wright, Alan Wynne, and Fereydoun Zangeneh.

This clinical trial was sponsored by Novo Nordisk Inc. (Princeton, NJ). Editorial assistance was provided by Angela Campbell and Jennifer Faleska.
REFERENCES

2. Phillip M, Battelino T, Rodriguez H, Danne T, Kaufman F; European Society for Paediatric Endocrinology; Lawson Wilkins Pediatric Endocrine Society; International Society for Pediatric and Adolescent Diabetes; American Diabetes Association; European Association for the Study of Diabetes: Use of insulin pump therapy in the pediatric age-group: consensus statement from the European Society for Paediatric Endocrinology, the Lawson Wilkins Pediatric Endocrine Society, and the International Society for Pediatric and Adolescent Diabetes, endorsed by the American Diabetes Association and the European Association for the Study of Diabetes. *Diabetes Care* 6:1653-1662, 2007

TABLE 1. Baseline Characteristics of Enrolled Population and Subject Disposition

<table>
<thead>
<tr>
<th></th>
<th>Insulin Aspart CSII</th>
<th>Insulin Lispro CSII</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subjects randomized (n)</td>
<td>198</td>
<td>100</td>
</tr>
<tr>
<td>3-5 years</td>
<td>7</td>
<td>3</td>
</tr>
<tr>
<td>6-11 years</td>
<td>58</td>
<td>30</td>
</tr>
<tr>
<td>12-18 years</td>
<td>133</td>
<td>67</td>
</tr>
<tr>
<td>Age (years)</td>
<td>13.0±3.30</td>
<td>13.1±3.02</td>
</tr>
<tr>
<td>Sex (%) (M/F)</td>
<td>48/52</td>
<td>48/52</td>
</tr>
<tr>
<td>Ethnicity (%) (C/B/H/A/O)</td>
<td>85/6/7/1/2</td>
<td>91/2/6/1/0</td>
</tr>
<tr>
<td>Weight (kg)</td>
<td>54.3±19.89</td>
<td>55.8±19.13</td>
</tr>
<tr>
<td>BMI (kg/m²)</td>
<td>21.7±4.35</td>
<td>21.8±4.37</td>
</tr>
<tr>
<td>z-BMI</td>
<td>0.72±0.780</td>
<td>0.75±0.755</td>
</tr>
<tr>
<td>Diabetes duration (years)</td>
<td>6.1±3.36</td>
<td>6.0±2.80</td>
</tr>
<tr>
<td>Use of CSII (weeks)</td>
<td>121.3±80.28</td>
<td>132.7±69.99</td>
</tr>
<tr>
<td>Insulin at entry (%) (aspart/lispro)</td>
<td>44/56</td>
<td>44/56</td>
</tr>
<tr>
<td>TDID prior to randomization (U)</td>
<td>49.5±24.2</td>
<td>52.8±24.0</td>
</tr>
<tr>
<td>Adjusted TDID (U/kg)</td>
<td>0.89±0.26</td>
<td>0.93±0.25</td>
</tr>
<tr>
<td>HbA1c (%)</td>
<td>8.0±0.94</td>
<td>8.1±0.84</td>
</tr>
<tr>
<td>Completed study</td>
<td>187 (94.4)</td>
<td>91 (91.0)</td>
</tr>
<tr>
<td>Discontinuation from study† (n (%))</td>
<td>11 (5.6)</td>
<td>9 (9.0)</td>
</tr>
<tr>
<td>For adverse event</td>
<td>0</td>
<td>1 (1.0)</td>
</tr>
<tr>
<td>Non-compliance</td>
<td>8 (4.0)</td>
<td>6 (6.0)</td>
</tr>
<tr>
<td>Other</td>
<td>3 (1.5)</td>
<td>2 (2.0)</td>
</tr>
</tbody>
</table>
Data are mean ± SD unless otherwise indicated. A = Asian; B = Black; C = Caucasian; H = Hispanic; O = Other; TDID = total daily insulin dose; U = units; BMI = body-mass index; z-BMI = number of SD above or below the mean BMI (adjusted by age and sex).

* Although subjects as young as 3 years of age were eligible for inclusion, the youngest child enrolled in this study was 4 years of age (insulin aspart group).

† Adverse event withdrawal was due to persistent hyperglycemia attributed to an infusion set problem; “Other” reasons for discontinuation included withdrew consent (2), request to discontinue CSII (2), and subject needed a medication not allowed by the study protocol.
TABLE 2. Hypoglycemia Episodes

<table>
<thead>
<tr>
<th>Type of Episode</th>
<th>Insulin Aspart CSII</th>
<th></th>
<th>Insulin Lispro CSII</th>
<th></th>
<th>p-value†</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(N = 198)</td>
<td></td>
<td>(N = 100)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>All</td>
<td>190 (96.0)</td>
<td>5547 (92.2)</td>
<td>97 (97.0)</td>
<td>2418 (81.3)</td>
<td>0.209</td>
</tr>
<tr>
<td>Major</td>
<td>19 (9.6)</td>
<td>25 (0.4)</td>
<td>8 (8.0)</td>
<td>9 (0.3)</td>
<td>0.482</td>
</tr>
<tr>
<td>Minor</td>
<td>188 (94.9)</td>
<td>4643 (77.2)</td>
<td>94 (94.0)</td>
<td>1961 (66.0)</td>
<td>0.129</td>
</tr>
<tr>
<td>Symptoms only</td>
<td>149 (75.3)</td>
<td>722 (12.0)</td>
<td>82 (82.0)</td>
<td>394 (13.3)</td>
<td>0.603</td>
</tr>
<tr>
<td>Unclassified</td>
<td>24 (12.1)</td>
<td>157 (2.6)</td>
<td>18 (18.0)</td>
<td>54 (1.8)</td>
<td>0.586</td>
</tr>
<tr>
<td>PG ≤ 36 mg/dL</td>
<td>94 (47.5)</td>
<td>301 (5.0)</td>
<td>41 (41.0)</td>
<td>117 (3.9)</td>
<td>0.307</td>
</tr>
</tbody>
</table>

Nocturnal*:
All	118 (59.6)	340 (5.7)	56 (56.0)	184 (6.2)	0.645
Major	3 (1.5)	4 (0.1)	1 (1.0)	1 (0.0)	0.590
Minor	112 (56.6)	293 (4.9)	47 (47.0)	157 (5.3)	0.694
Symptoms Only	25 (12.6)	33 (0.6)	19 (19.0)	23 (0.8)	0.288
Unclassified	6 (3.0)	10 (0.2)	1 (1.0)	3 (0.1)	0.659
PG ≤ 36 mg/dL	18 (9.1)	25 (0.4)	8 (8.0)	19 (0.6)	0.376

Values are n (%) unless otherwise indicated.

PG = plasma glucose; CSII = continuous subcutaneous insulin infusion; Rate = number of hypoglycemic events per subject year. Major = a hypoglycemic episode with severe central nervous system symptoms consistent with hypoglycemia in which the subject was unable to treat him/herself and had a PG <56 mg/dL and/or reversal of symptoms after food intake, or administration of glucagon or intravenous glucose. Minor = a hypoglycemic episode with PG <56 mg/dL with or without symptoms that were self-treated; Symptoms = symptoms related to hypoglycemia that were not meter confirmed, or PG ≥56 mg/dL.

* Nocturnal events were hypoglycemic events that occurred between midnight and 5:59 AM. Events with missing times were excluded.

† p-value from Poisson regression testing whether rates were similar between treatments (rate ratio = 1).
FIGURE LEGEND

Figure 1. Eight-point self-monitored plasma glucose profiles for insulin aspart CSII and insulin lispro CSII at Week 0 and Week 16 (intent-to-treat population). SMPG = self-monitored plasma glucose; BB = before breakfast; B2 = 2 hours after breakfast; BL = before lunch; L2 = 2 hours after lunch; BD = before dinner; D2 = 2 hours after dinner; BE = at bedtime; 2 AM = at 2 AM ± 60 minutes.
FIGURE 1