The Effect of LDL-cholesterol and Treatment with Losartan on End-stage Renal Disease in the RENAAL Study

Andrew M. Tershakovec, MD1; William F. Keane, MD1; Zhongxin Zhang, PhD1; Paulette A. Lyle, BS1; Gerald B. Appel, MD2; Janet B. McGill, MD3; Hans-Henrik Parving, MD4; Mark E. Cooper, MD, PhD5; Shahnaz Shahinfar, MD1; Barry M. Brenner, MD6

1Merck & Co., Inc., Upper Gwynedd, PA; 2Columbia University, New York, NY; 3Washington University, St. Louis, MO; 4University Hospital of Copenhagen, Copenhagen, Denmark; 5Baker Heart Research Institute, Melbourne, Australia; 6Renal Division, Brigham and Women’s Hospital, Boston, MA

Running title: LDL-cholesterol and ESRD risk in the RENAAL study

Correspondence:
Andrew M. Tershakovec
Merck & Co., Inc.
351 N. Sumneytown Pike
North Wales, PA 19454
andrew_tershakovec@merck.com.

Received for publication 31 January 2007 and accepted in revised form 4 December 2007.
Renal pathology and dyslipidemia commonly coexist. Treatments that lower albuminuria/proteinuria may lower lipids but it is not known whether lipid lowering independent of lessening albuminuria/proteinuria slows progression of kidney disease. We examined the association between low-density lipoprotein cholesterol (LDL-C) levels and treatment with losartan on end-stage renal disease (ESRD). Lipid levels and albuminuria measurements were obtained at baseline and at Year 1 in a post hoc analysis from the Reduction of Endpoints in NIDDM with the Angiotensin II Antagonist Losartan (RENAAL) study, which compared the effects of losartan- versus placebo-based antihypertensive therapy in patients with type 2 diabetes and nephropathy. LDL-C lowering was associated with a lower risk of ESRD; however, this seemed to be largely an association with the reduction in albuminuria.

Registered on www.clinicaltrials.gov as NCT00308347.
Approximately 60% of patients with chronic kidney disease (CKD) have dyslipidemia (1,2). Elevated low-density lipoprotein (LDL)-cholesterol may be associated with CKD progression (2); however, patients with normal renal function and dyslipidemia do not develop renal insufficiency (3). Treatments that reduce albuminuria and slow CKD progression commonly lower lipids. It is unclear whether lipid lowering itself, rather than as a result of reduced albuminuria, slows CKD progression.

We investigated the relationship of LDL-cholesterol and albuminuria at baseline and/or Year 1 and treatment with losartan on end-stage renal disease (ESRD) in the Reduction of Endpoints in NIDDM with the Angiotensin II Antagonist Losartan (RENAAL) study.

RESULTS

There were 1061 patients (70% of the overall population) included. Baseline characteristics were similar between the losartan (n = 540) and placebo (n = 521) groups; the placebo group was somewhat older and had somewhat higher triglycerides. Baseline LDL-cholesterol and albuminuria were positively associated. Decreases in LDL-cholesterol (losartan baseline 3.63, Year 1 3.39 mmol/l; placebo 3.64, Year 1 3.50 mmol/l) and albuminuria (losartan 1054.8, Year 1 696.6 g/mmol, ratio 0.7; placebo 1058.1, Year 1 1032.4 g/mmol, ratio 1.0) were greater in the losartan group. Changes in LDL-cholesterol and albuminuria were positively associated. The decrease in albuminuria with losartan was greater in those with baseline LDL-cholesterol <3.10 mmol/L compared with those with LDL-cholesterol ≥3.10 mmol/L, a relationship that was not evident with placebo.

Baseline LDL-cholesterol level was predictive of ESRD, but not after adjusting for baseline albuminuria (table). Baseline statin use was not predictive of ESRD. Change in LDL-cholesterol (decrease versus increase) predicted ESRD (hazard ratio of 0.71, after adjustment. Predictivity for ESRD was lost when adjusting for baseline risk factors and Year 1 albuminuria (table). Losartan therapy and decreasing LDL-
cholesterol at Year 1 were associated with reduced ESRD risk. Much of the reduced risk was accounted for when Year 1 albuminuria was added to the model.

CONCLUSIONS

In univariate analysis in the RENAAL trial, risk for the primary endpoint increased by 32% per 50 mg/dl (1.29 mmol/l) in LDL-cholesterol, 67% per 100 mg/dl (2.59 mmol/l) in total cholesterol, and 47% per log-transformed mg/dl (0.01 mmol/l) in triglycerides, with no relationship between high-density lipoprotein (HDL)-cholesterol and the primary composite endpoint (7). Total (risk increase 96% per 100 mg/dl (2.59 mmol/l) and LDL (risk increase 47% per 50 mg/dl [1.29 mmol/l]) cholesterol increased risk for ESRD. Our data suggest that these associations are mediated by changes in albuminuria associated with losartan therapy and lipid level changes are secondary effects of losartan treatment. LDL-cholesterol decreased in both groups at Year 1, considerably more in the losartan group. Decreases in the placebo group may have been related to diet or lipid-lowering agents.

Kidney function may be improved by agents that lower lipids (8-10). In the Cholesterol and Recurrent Events (CARE) study (10), patients with previous myocardial infarction, total cholesterol <240 mg/dl (6.21 mmol/l), and CKD had reduced rates of decline in renal function with pravastatin versus placebo. In the Diabetes Atherosclerosis Intervention Study (DAIS) (11) and the Fenofibrate Intervention and Event Lowering in Diabetes (FIELD) (12) trial in patients with type 2 diabetes, fenofibrate therapy reduced progression of albuminuria. Simvastatin in the Heart Protection Study (HPS) significantly decreased decline in GFR in diabetics (13).

Several hypotheses regarding relationships among albuminuria, CKD, and lipid abnormalities exist (14,15). In CKD, increased total cholesterol, LDL-cholesterol, and lipoprotein (a) could be secondary to urinary protein loss and subsequent increased hepatic production of lipoproteins (16-19). Lipoproteins may play a role in renal injury in CKD in a way that is analogous to their involvement in atherosclerosis (20-22), such as promoting renal vascular dysfunction (22) and inflammation (12,23).

The analysis showed a greater decrease in albuminuria with losartan and those with lower baseline LDL-cholesterol, which was not found with placebo. It is difficult to interpret these findings because lower baseline LDL-cholesterol was at least partially due to use of statins in those with lower baseline LDL-cholesterol. However, it is possible that lower baseline LDL-cholesterol and/or statin therapy interacts with losartan to induce a greater decrease in proteinuria, which in turn leads to further lowering in LDL-cholesterol.

LDL-cholesterol lowering was associated with lower risk of ESRD in the RENAAL study. Losartan reduced albuminuria and LDL-cholesterol after 1 year of treatment. The association between LDL-cholesterol and ESRD seems to be largely mediated by changes in albuminuria. Additional data are needed to clarify the role of lipid lowering in the progression of type 2 diabetic nephropathy. However, given the cardioprotective effects of lipid lowering in this high-risk group, lipid-lowering therapy should remain a mainstay of the management of diabetic patients, even without a renoprotective effect.

ACKNOWLEDGEMENTS

The RENAAL study was supported by Merck & Co., Inc.
REFERENCES

TABLE. Hazard ratios for end-stage renal disease

<table>
<thead>
<tr>
<th>Adjusted by</th>
<th>LDL-C at Year 1</th>
<th>Combined</th>
<th>Losartan</th>
<th>Placebo</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n</td>
<td>HR (95% CI)</td>
<td>n</td>
<td>HR (95% CI)</td>
</tr>
<tr>
<td>Baseline<sup>a</sup> Increase</td>
<td>409</td>
<td>1.00</td>
<td>180</td>
<td>0.70 (0.44-1.11)</td>
</tr>
<tr>
<td>Baseline<sup>a</sup> Decrease</td>
<td>652</td>
<td>0.71 (0.53-0.96)*</td>
<td>360</td>
<td>0.50 (0.34-0.75)*</td>
</tr>
<tr>
<td>Baseline + Year 1<sup>b</sup> Increase</td>
<td>409</td>
<td>1.00</td>
<td>180</td>
<td>0.88 (0.55-1.39)</td>
</tr>
<tr>
<td>Baseline + Year 1<sup>b</sup> Decrease</td>
<td>652</td>
<td>1.11 (0.81-1.53)</td>
<td>360</td>
<td>0.93 (0.61-1.41)</td>
</tr>
</tbody>
</table>

^a Adjusted by baseline albuminuria (log transformed), serum creatinine, serum albumin, hemoglobin, and LDL-cholesterol.

^b Adjusted by above and albuminuria at Year 1.

* CI, confidence interval; HR, hazard ratio; LDL-C, low-density lipoprotein cholesterol.

* P-value < 0.05.