Translating the Diabetes Prevention Program into an Urban Medically Underserved Community: A Non-Randomized Prospective Intervention Study

1Miriam C. Seidel, MS, RD
1Robert O. Powell, BS
2Janice C Zgibor, PhD
3Linda M. Siminerio, PhD, RN
3Gretchen A. Piatt, PhD

1 University of Pittsburgh Medical Center, Braddock, PA
2 University of Pittsburgh Department of Epidemiology, Pittsburgh, PA
3 University of Pittsburgh Diabetes Institute, Pittsburgh, PA

Running Title: Translating the Diabetes Prevention Program

Corresponding Author:
Miriam Seidel, MS, RD, LDN
400 Holland Avenue
Braddock PA 15104
seidelmc@upmc.edu

Received for publication 24 September 2007 and accepted in revised form 17 January 2008.
ABSTRACT

Objective: The objective of this study was to determine if a community-based, modified DPP Group Lifestyle Balance (GLB) intervention, for individuals with Metabolic Syndrome (MetS), was effective in decreasing risk for type 2 diabetes (T2D) and cardiovascular disease (CVD) in an urban, medically underserved community; and subsequently to determine if improvements in clinical outcomes could be sustained in the short-term.

Research Design and Methods: This non-randomized prospective intervention study utilized a one group design to test the effectiveness of a community-based GLB intervention. Residents from eleven targeted neighborhoods were screened for MetS (n=573) and took part in a 12 week GLB intervention (n=88) that addressed safe weight loss and physical activity.

Results: A marked decline in weight (46.4% lost ≥ 5% and 26.1% lost ≥ 7%) was observed in individuals following completion of the intervention. 87.5% (28) and 66.7% (12) of these subjects sustained the 5% and 7% reduction, respectively, at the 6-month reassessment. Over 1/3 of the population (43.5%, n=30) experienced improvements in ≥ one component of MetS, and 73.3% (22) sustained this improvement at the 6-month reassessment. Additional improvements occurred in waist circumference (p<0.009) and blood pressure levels (p=0.04) after adjustment for age, gender, race, mean number of GLB classes attended, and time.

Conclusions: Adults in an urban, medically underserved community can decrease their risk for T2D and CVD through participation in a GLB intervention and short-term sustainability is feasible. Future research will include long-term follow-up of these subjects.
Type 2 Diabetes (T2D) is a prevalent, costly condition that disproportionately affects disadvantaged populations [1]. Approximately 54 million American adults age 20 years or older had prediabetes in 2002, placing them at substantially increased risk for developing T2D [2]. As the prevalence of T2D in the U.S. is expected to more than double by the year 2050, reducing T2D risk is a public health priority [3].

Obesity and sedentary lifestyle are risk factors for T2D as they interact multiplicatively in the development of the disease. Substantial evidence demonstrates that intensive lifestyle intervention (ILI) can reduce the incidence of T2D in individuals at risk [4-6]. The Diabetes Prevention Program (DPP) demonstrated a 58% reduction in incidence of T2D in subjects who were randomized to the ILI group of the program [5]. The ILI consisted of a structured diet and increased physical activity, without medication intervention. Significant reduction of T2D occurred regardless of ethnicity, age or gender. Moreover, the ILI was effective in reducing risk for cardiovascular disease (CVD) and components of metabolic syndrome (MetS), while remaining cost-effective [7, 8].

While the DPP’s intensive methodology was necessary to study the efficacy of lifestyle change in preventing T2D, it is not easily replicated in community settings [9]. Indeed, translation of this evidence into community settings remains limited. Therefore, our objective was to determine if a community-based, modified DPP Group Lifestyle Balance (GLB) intervention, for individuals with MetS, is effective in decreasing risk for T2D and CVD in an urban, medically underserved community; and subsequently to determine if improvements in clinical outcomes can be sustained in the short-term.

RESEARCH DESIGN AND METHODS

This study was a non-randomized prospective intervention study that utilized a one group design to test the effectiveness of a community-based GLB intervention. Recruitment for the study began in April 2005 in eleven urban, medically underserved neighborhoods near Pittsburgh, Pennsylvania. This area is the primary service area of the community hospital and served as the study’s base location.

The target community was a former hub of the steel industry that experienced industrial downsizing in the 1980s. This led to increased rates of unemployment and out-migration of the young and more affluent, resulting in a predominately older, socioeconomically depressed area with a high prevalence of chronic disease. Caucasians and African-Americans are the predominate racial groups with African Americans making up 36% of the community population compared to 13.1% in the county and 10.6% in Pennsylvania (US Census Bureau, 2000 Census. The study was carried out in two phases: phase I, community-based screening to determine GLB intervention eligibility and phase II, provision of the GLB intervention with 3 and 6 month reassessment. Follow-up remains on-going. The study design is outlined in Figure 1.

Phase I: Community-Based Screening

Adults, 18 years and older, from the eleven targeted neighborhoods were eligible to be screened for MetS. Recruitment involved posting flyers in churches, physician offices worksites, store fronts as well as placing information in the local newspaper and on the local cable broadcast channel. People were not eligible for screening if they reported a diagnosis of diabetes or a current prescription for glucose lowering medication; were pregnant; could not walk ¼ mile without stopping; had bariatric surgery, currently using weight loss medications, or could not provide informed consent.

Five hundred and seventy-three people attended one of 35 screenings during 2005-2006 to determine intervention eligibility:
Screenings were offered at no cost in churches, work-sites and other community locations in the eleven neighborhoods. Eligible subjects had to have a BMI ≥ 25 kg/m², physician consent to exercise, and at least 3 of the 5 components of MetS as defined by the National Cholesterol Education Program’s Adult Treatment Panel III [10]. Study staff (registered dietitian, exercise specialist, and two lay health coaches (LHC)) facilitated all screenings. The local hospital provided the phlebotomist and lab services. All staff was certified in standardized outcomes measurement consistent with the DPP.

After providing informed consent and completing a demographic questionnaire, participants had height, weight, waist circumference (WC), and blood pressure (BP) measured according to standard protocol. Blood samples were collected after an 8 hour fast to determine glucose, triglycerides, and HDLc levels. Triglycerides and HDLc were measured by enzymatic assays using the Dade Behring RXL. Blood glucose was measured by the hexokinase method using the Dade Behring RXL. Screening results were mailed to participants and their physicians. Eligible subjects (n=185) were invited to participate in the GLB intervention (Figure 1).

Phase II: Modified Group Lifestyle Balance Intervention. The original DPP ILI was developed at the University of Pittsburgh by the DPP Lifestyle Resource Core and has been described in detail elsewhere [11]. Members of the DPP lifestyle team adapted the individual ILI to a group-based program, reconfiguring the 16 sessions into 12 sessions while maintaining key concepts. As in the original DPP ILI, the goals of the GLB intervention were to achieve and maintain a 7% weight loss, and to progressively increase physical activity to 150 minutes per week of moderately intense physical activity. The modifications to the intervention were: **DPP Intervention:** 16 sessions over 24 wks, individual counseling, food pyramid, fat intake, and brief introduction to pedometer; **Modified Group Lifestyle Balance.** 12 weekly sessions over 12-14 wks, group classes, healthy food choices, emphasis on fat intake and calories, and more emphasis on pedometer

Two trained “preventionists,” (one dietitian and one exercise specialist) were responsible for delivery of the GLB intervention, which took place in the 11 targeted neighborhoods and was held weekly for 12 weeks lasting approximately 90 minutes. Group size ranged from 5-13 participants. The preventionists attended a two-day training workshop, delivered by members of the original DPP Lifestyle team that addressed how to properly deliver each of the 12 modified sessions. This workshop was conducted by the University of Pittsburgh’s Diabetes Prevention Support Center. As part of the LHC training, the LHCs acted as participants in a GLB intervention to gain perspective on participant needs and concerns. LHCs communicated with participants and physician offices and identified barriers and solutions to promote program engagement and retention. They also aided in study logistics and shared relevant experiences to initiate class discussion. LHC performance were observed daily by professional staff.

Eighty-eight of 185 eligible subjects enrolled in the intervention (Figure 1). Each subject received a copy of the GLB handouts, a fat and calorie counter, self-monitoring books for keeping track of food and physical activity, a pedometer, measuring cups and spoons, a chart for recording weekly weights, and a free 6-month membership to the local YMCA. All subjects were asked to self-monitor food intake and physical activity throughout the 12 week intervention and were given feedback concerning progress.

GLB Intervention Measures. Anthropometric (height, weight, BP, and WC) and laboratory data (glucose, triglycerides, and HDLc) were subsequently collected at three and six month reassessment. Participants and their physicians received copies of the results. Sixty-nine
participants provided 3-month data, yielding a response rate of 78.4%. Fifty participants provided 6-month data, with a response rate of 56.8%. Those who did not complete the intervention were significantly older and a greater proportion was non-white in comparison to those who completed the intervention. There was no difference in education level between groups.

Study Outcomes. There were two primary outcomes of the intervention: 1) 5 or 7% weight loss from baseline to three and six month follow-up, and 2): improvement of at least one MetS component from baseline to three and six month follow-up. Secondary outcomes were improvements in triglycerides, abdominal obesity, hypertension status, HDLc, and glucose levels. The University of Pittsburgh Institutional Review Board approved the study protocols and all participants provided informed consent.

Analyses. Analyses and results presented in this report will focus on short-term (3 and 6 month) outcomes of the GLB intervention. A future report will examine long-term (18+ months) outcomes. All analyses were conducted at the individual level. Analyses were not “intent to treat” as the study design was a non-randomized intervention study. However, a last response carried forward imputation was conducted to estimate the impact of attrition on the results. Six month follow-up data were imputed for 19 individuals. Measures of central tendency (e.g. proportions, means, standard deviations, medians, etc.) were used for all descriptive analyses. Student’s t-tests and Pearson Chi-Square tests were used to determine differences between the GLB intervention population (n=88) and the screening population (n=573). McNemar’s test for discrete data was used to determine differences between baseline and 3 and 6 month reassessment in the intervention population. A chi-square test for trend was used to determine unadjusted trends over time. To adjust for the effect of possible confounders and to examine the data in a continuous manner to allow for improvements to be observed even if MetS criteria were not met, mixed modeling, utilizing individual growth curve analysis, was employed. Age centered at mean age 54.0, gender, race, mean number of intervention classes attended, and time were forced into all models. P-values less than 0.1 were used to determine trends in the data. P-values less than 0.05 were considered statistically significant. All analyses were conducted using SAS v8.2; SAS Institute, Cary, NC.

RESULTS

Baseline population characteristics of the 88 subjects who took part in the GLB intervention are presented in Table 1. The majority of subjects were female (84.1%), non-Hispanic white (72.7%), and an average of 54 years old. Approximately ¾ of the population had at least a high school education (77.4%) and a family history of diabetes (71.1%). Nearly 60% of the study households had an annual income below 200% of the poverty level (<$41,300 for a family of four). Sixty-nine percent of subjects attended at least 75% of GLB classes. When comparing the GLB intervention population to the overall screening population to determine generalizability, no statistically significant differences were apparent [Age: GLB (54.0 ± 10.5) vs. Screening (53.7 ± 15.6), p=0.86; Gender: GLB (% female: 84.1) vs. Screening (75.2), p= 0.07; Race: GLB (% non-Hispanic White: 72.7%) vs. Screening: (72.3%), p=0.93].

Table 1 also depicts the proportion of GLB subjects with each component of MetS at baseline. Abdominal obesity was the most prevalent (93.2%), followed by abnormal HDLc (84.1%), hypertension (68.2%), high triglyceride levels (47.7%), and increased glucose (40.9%).

Analysis of a 5 and 7% weight reduction was conducted on the 69 subjects who provided data at three months. In subjects who provided data at this time, 46.4% (32) lost at least 5% of
their body weight, while 26.1% (18) lost at least 7%. 87.5% (28) and 66.7% (12) of these subjects sustained the 5% and 7% reduction, respectively, at the 6-month reassessment. When improvement in MetS components was examined, similar patterns were observed. Over 1/3 of the population (43.5%, n=30) experienced improvements in ≥ one component of MetS at 3 months, and 73.3% (22) of these subjects sustained this improvement at 6 months.

When change in the proportion of subjects who met individual MetS criteria was examined over time, significant trends were observed (Table 2). Most notably, the proportion of subjects with abdominal obesity decreased significantly over time [Baseline: 90% (45), Three: 82% (41), Six: 68% (34), p for trend=0.006]. This significant reduction remained despite adjustment for age, gender, race, and the number of intervention classes attended (adjusted p=0.009). A similar pattern was observed for subjects with hypertension [Baseline: 68% (34), Three: 58% (29), Six: 48% (24) p for trend=0.04; adjusted p=0.04]. The proportion of subjects with triglyceride levels ≥ 150 mg/dL [Baseline: 58% (29), Three: 32.7% (16), Six: 36.7% (18), p for trend=0.006, adjusted p=0.6] and abnormal HDLc levels also improved over time [Baseline: 86% (43), Three: 87.8% (43), Six: 65.3% (32), p for trend=0.001, adjusted p=0.63]; however, after adjustment for age, gender, race and class attendance, these significant associations were attenuated. In contrast to the other components of MetS, the proportion of subjects with glucose ≥ 100 mg/dL increased over time [Baseline: 42% (21), Three: 51% (25), Six: 61.2% (30), p for trend=0.06, adjusted p=0.01] (Table 2). Imputation analyses revealed the same pattern of significant results.

CONCLUSIONS

There are two principle findings from this non-randomized, prospective intervention study. Nearly half of subjects (n=32) who participated in a 12 week GLB intervention lost at least 5% of their body weight, and approximately 1/3 (n=18) lost at least 7%. 87.5% (n=28) and 66.7% (n=12) of subjects sustained the 5% and 7% reductions, respectively, at the 6-month reassessment. Similar patterns were observed for improvements in MetS parameters with over 1/3 (n=30) of the population experiencing improvements in ≥ one component of MetS, and 73.3% (n=22) of subjects sustained this improvement at the 6-month reassessment. Additionally, significant improvements occurred in WC, BP, triglycerides and HDLc levels.

To our knowledge, this is one of few reports to demonstrate the feasibility and effectiveness of translating the national DPP into an urban, medically underserved community. Moreover, it is one of very few that demonstrated sustained weight loss and MetS risk reduction in a community setting. Numerous studies reported initial weight loss and reduction in MetS risk parameters immediately following a lifestyle intervention; however, they did not report the maintenance of health outcomes[12-14].

Translating the national DPP into the targeted community required an adaptation of the original DPP methodologies to better suit diverse populations, resources, and selected non-clinical screening sites. Our study used the presence of overweight (BMI > 25 kg/m²) and MetS as a practical, relatively low-cost proxy for determining T2D and CVD risk and intervention eligibility in place of the oral glucose tolerance test [15-18]. Fasting blood work was required, along with anthropometric measurements. Indeed, many programs avoid fasting blood work when recruiting for diabetes prevention programs and instead use anthropometric measurements, diabetes risk questionnaires, and knowledge and behavior surveys to determine diabetes and/or CVD risk [19-21]. Measuring BMI and laboratory data
enabled us to assess whether our intervention was indeed effective in reducing risk for T2D and CVD among participants.

Another example of adapting the national DPP to the community setting is the use of LHCs in our study. The LHCs were members of the study community and fostered a comfortable and familiar atmosphere for participants. LHCs scheduled follow-up visits, encouraged participation, and provided any missed information. This may have contributed to high class attendance as 77% of subjects completed the program. These completion and attendance rates compare positively to other community based programs [12, 21, 22].

Sustainable weight loss is often the goal for interventions aimed at preventing or delaying T2D and CVD [5, 7, 19, 22]. The weight loss goal in the national DPP was 7%, however, other studies have found a 5% loss to be clinically significant [12, 21]. Of those who lost at least 5% of their body weight at three months, a greater proportion was able to sustain this improvement than those who lost at least 7% of their body weight.

Lack of accuracy in self-reporting of food consumption and physical activity is commonly documented in weight loss studies. [23]. This study goes without exception. There was an overall resistance towards self-reporting both food consumption and activity levels. Calories and fat grams were often inaccurately documented and portion sizes were usually not recorded. A similar pattern occurred when reporting minutes of activity. While pedometers were introduced to help track daily activity, there was reluctance in using them. Common barriers included inaccuracy or inconvenience. Given the issues, these data were not considered. Nonetheless, participants verbally indicated minimal success achieving the physical activity goal of 150 minutes per week. Perhaps a method to obtain activity measures could include tracking the frequency of gym visits. Though it should be noted, despite the free YMCA membership, only 55 of the 88 participants obtained their membership. Reasons for not using the YMCA included perceived lack of time, distance, and apprehension toward a facility atmosphere.

Although food intake and physical activity data were not captured, subjects experienced improvements in weight and most parameters of MetS following the intervention. Unexpectedly, the percentage of subjects with a glucose level ≥ 100 mg/dL rose at both the three and six month reassessments. Physical inactivity may explain this finding as activity aids in the regulation of blood sugar in people without diabetes regardless of body mass [24]. Improvement in blood glucose may be seen with further weight loss and increases in physical activity.

In conducting translational research, circumstances and environments are not “controllable,” like efficacy-based research; therefore, limitations exist. For example, all subjects were volunteers able to attend morning screenings. This inherently introduced volunteer bias as only those available in the morning could participate, and may have contributed to the small sample size of the cohort. Additionally, as with most community studies, males were under-represented with 26% participation. Efforts to recruit more men may include the use of male LHCs and targeting traditional male professions. Modified strategies to avoid fasting blood work may enhance recruitment of both male and females in need of more flexible screening schedules.

Our study was underpowered to detect significant differences in the primary and secondary outcomes due to the small sample size. Initial sample size calculations estimated that 190 subjects would provide sufficient power to demonstrate valid changes in the proportion of subjects who decrease at least one parameter of MetS. Therefore, it is possible these findings are subject to type II error where we failed to detect a difference when one truly existed. Thus, if there were
improvements, we were unable to detect them. However, those findings that showed statistically significant differences represent true differences. As attrition may be perceived as a major limitation in our data, we performed last response carried forward imputations for the 19 individuals that did provide 6 month follow-up data. The results remained unchanged with the same significant pattern as was seen in the non-imputed analyses. While imputation analyses allow adjustment for attrition, it must be noted that it provides an overestimation of the intervention effect.

These preliminary results suggest that adults in an urban, medically underserved community can decrease their risk for T2D and CVD through participation in a GLB intervention and short-term sustainability is feasible. As a result, a local insurer became interested in this initiative. Discussions are underway for making primary prevention a billable and reimbursable service in the Pittsburgh area. Future analysis will include long-term follow-up of these subjects.

ACKNOWLEDGEMENTS

We acknowledge Rhonda Lee and Helen Tomasic for their efforts on this project. Additionally, we thank UPMC Braddock for their continued support throughout this effort. We also thank the YMCA of Greater Pittsburgh.

These data were presented in abstract format at the 2007 CDC Division of Diabetes Translation annual conference.

This research was sponsored by funding from the United States Air Force administered by the U.S. Army Medical Research Acquisition Activity, Fort Detrick, Maryland, Award Number W81XWH-04-2-003. Review of material does not imply Department of the Air Force endorsement of factual accuracy or opinion.”
REFERENCES

TABLE 1. Baseline Population Characteristics of the Group Lifestyle Balance Intervention Population (n=88)

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>% (n) or mean (S.D.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Demographic</td>
<td></td>
</tr>
<tr>
<td>Age (years)</td>
<td>54.0 (10.5)</td>
</tr>
<tr>
<td>Race (% non-Hispanic white)</td>
<td>72.7 (64)</td>
</tr>
<tr>
<td>Gender (% female)</td>
<td>84.1 (74)</td>
</tr>
<tr>
<td>At least a high school diploma (% yes)</td>
<td>77.4 (68)</td>
</tr>
<tr>
<td>Poverty ≤ 200% (≤ $41,300/year for HH of four)</td>
<td>59.7 (37)</td>
</tr>
<tr>
<td>Family history of diabetes (% yes)</td>
<td>71.1 (63)</td>
</tr>
<tr>
<td>Class attendance (attended ≥ 75% of classes)</td>
<td>69.3 (61)</td>
</tr>
<tr>
<td>Weight (lbs)</td>
<td>216.8 (40.7)</td>
</tr>
<tr>
<td>*Components of the Metabolic Syndrome</td>
<td></td>
</tr>
<tr>
<td>Abdominal obesity (≥ 102 cm in males, ≥ 88 cm in females)</td>
<td>93.2 (82)</td>
</tr>
<tr>
<td>Abnormal HDLc (< 40 mg/dL in males, < 50 mg/dL in females)</td>
<td>84.1 (74)</td>
</tr>
<tr>
<td>Hypertension (BP ≥ 130/85 mmHg)</td>
<td>68.2 (60)</td>
</tr>
<tr>
<td>Triglycerides ≥ 150 mg/dL (% yes)</td>
<td>47.7 (42)</td>
</tr>
<tr>
<td>Glucose ≥ 100 mg/dL (% yes)</td>
<td>40.9 (36)</td>
</tr>
</tbody>
</table>

*National Cholesterol Education Program’s Adult Treatment Panel III
TABLE 2. Change in the Proportion of Subjects Meeting the Criteria for Components of the Metabolic Syndrome Over Time Following the Group Lifestyle Balance Intervention (Baseline, 3 and 6 Month Reassessment) n=50

<table>
<thead>
<tr>
<th>Component</th>
<th>Baseline</th>
<th>3-Month Reassessment</th>
<th>6-Month Reassessment</th>
<th>Unadjusted p-value for trend</th>
<th>Adjusted p-value*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abdominal obesity (≥ 102 cm in males, ≥ 88 cm in females)</td>
<td>90.0 (45)</td>
<td>82.0 (41)</td>
<td>68.0 (34)</td>
<td>0.006</td>
<td>0.009</td>
</tr>
<tr>
<td>Abnormal HDLc (< 40 mg/dL in males, < 50 mg/dL in females)</td>
<td>86.0 (43)</td>
<td>87.8 (43)</td>
<td>65.3 (32)</td>
<td>0.001</td>
<td>0.63</td>
</tr>
<tr>
<td>Hypertension (BP ≥ 130/85 mmHg)</td>
<td>68.0 (34)</td>
<td>58.0 (29)</td>
<td>48.0 (24)</td>
<td>0.04</td>
<td>0.04</td>
</tr>
<tr>
<td>Triglycerides ≥ 150 mg/dL (% yes)</td>
<td>58.0 (29)</td>
<td>32.7 (16)</td>
<td>36.7 (18)</td>
<td>0.006</td>
<td>0.6</td>
</tr>
<tr>
<td>Glucose ≥ 100 mg/dL (% yes)</td>
<td>42.0 (21)</td>
<td>51.0 (25)</td>
<td>61.2 (30)</td>
<td>0.06</td>
<td>0.01</td>
</tr>
</tbody>
</table>

* Data presented are %/(n)

All analyses adjusted for age, gender, race, mean number of GLB classes attended, and time
Figure 1: Study Design of a Non-Randomized Prospective Group Lifestyle Balance Intervention Study

* Per informal conversations between subjects and LHC
† One cohort had not reached six month mark at time of data analysis