Plasma Adiponectin as a Marker of Insulin Receptor Dysfunction: Clinical Utility in Severe Insulin Resistance

Robert K. Semple¹, MB, PhD, Elaine K. Cochran², MSN, CRNP, Maria A. Soos¹, PhD, Keith A. Burling¹, MPhil, David B. Savage¹, MD, Phillip Gorden³, MD, Stephen O’Rahilly¹, MD

¹ Institute of Metabolic Science, University of Cambridge, Addenbrooke’s Hospital, Cambridge CB2 0QQ, UK.
²Clinical Endocrinology Branch, National Institute of Diabetes, Digestive and Kidney Diseases, Bethesda, Maryland 20892

Running Title: Diagnosis of Insulin Receptoropathy

Corresponding Author:
Dr. R. Semple,
Institute of Metabolic Science,
Addenbrooke’s Hospital
Cambridge, CB2 0QQ
rks16@cam.ac.uk

Received for publication 18 November 2007 and accepted in revised form 13 February 2008.

Additional information for this article can be found in an online appendix at http://care.diabetesjournals.org.
ABSTRACT

Objective: Severe insulin resistance is associated with high morbidity. Identification of severely insulin resistant patients who have genetic or acquired insulin receptor dysfunction may aid therapeutic decision making, however onerous diagnostic tests, allied to a low frequency of insulin receptor dysfunction, often precludes formal diagnosis. Our previous observation of paradoxical hyperadiponectinemia in insulin receptoropathy provides a possible basis for a simpler and cheaper screening test.

Methods: Receiver Operating Characteristics analysis was used to determine diagnostic thresholds for insulin receptoropathy in severe insulin resistance for adiponectin and for the insulin-regulated hepatic proteins SHBG and IGFBP-1.

Results: Adiponectin above 7 mg/l in severe insulin resistance had a 97% positive predictive value (PPV) for insulin receptoropathy, and below 5 mg/l a 97% negative predictive value (NPV). IGFBP-1 and SHBG had lesser, though still significant, utility.

Conclusion: Use of these markers is likely to have significant value in accelerating the diagnosis of insulin receptoropathies.
Pathology in the insulin receptor underlies at least two forms of extreme insulin resistance, namely those caused by mutations in the receptor or by autoantibodies against the receptor. While clinical features are helpful in distinguishing these syndromes from more common forms of insulin resistance, they are not definitive (1; 2). Diagnostic laboratory testing for these disorders is cumbersome, and, for the most part, not available from commercial resources. A simple and highly specific screening test would therefore be of special utility. We have previously reported that plasma adiponectin is elevated in these receptoropathies, in contrast to other forms of severe insulin resistance (3; 4), and we now formally assess the diagnostic performance of adiponectin, Insulin-like growth factor binding protein 1 and sex hormone binding globulin (IGFBP-1 and SHBG; both insulin responsive (5; 6).

RESEARCH DESIGN AND METHODS

All patients had severe insulin resistance, defined as fasting insulin above 150 pmol/l, or peak insulin on oral glucose tolerance testing above 1,500 pmol/l in non-diabetic patients. In complete insulin deficiency it was defined as an insulin requirement above 3U/kg/day. Those with partial beta cell decompensation and clinical features including acanthosis nigricans were included at the investigators’ discretion. All patients gave informed consent with approval of the local research ethics committee in Cambridge, U.K., or of the institutional review board of the NIDDK. Patients below 1 year old were excluded. Genetic insulin receptoropathy was defined by homozygous (n=5), compound heterozygous (n=6) or heterozygous (n=9) mutations in the insulin receptor gene. All patients had the insulin receptor gene sequenced. Type B insulin resistance was diagnosed on the basis of severe insulin resistance with anti-insulin receptor antibodies, determined by immunoprecipitation of insulin receptor using patient serum followed by immunoblotting (1; 7). Anti-insulin receptor antibody assays were undertaken in patients with features suggestive of type B insulin resistance such as rapid onset of severe insulin resistance in adulthood and associated autoimmune disease (1).

Other patients had severe insulin resistance which was either idiopathic (n=62) or due to mutations in the genes encoding lamin A/C (n=15), Akt2 (n=2), or AGPAT2 (n=2). Blood was drawn in the fasting state, and plasma stored at -20°C. Insulin and adiponectin DELFIA assays have been described previously (4; 8). IGFBP-1 was determined using an immunoradiometric assay (Diagnostic Systems Laboratories), and SHBG using an IMMULITE 1000 solid phase chemiluminescent enzyme immunometric assay (Siemens Medical Solutions Diagnostics).

RESULTS

Adiponectin was assayed in 20 patients with insulin receptor mutations, 14 patients with type B insulin resistance, and 81 patients with other forms of severe insulin resistance. Mean adiponectin levels were 19.7, 36.1 and 2.4 mg/l respectively (online Appendix 1). Receiver Operating Characteristics (ROC) analysis was then employed. That is, true positive and false positive rates of diagnosis of insulin receptoropathy were determined across the adiponectin range. The ROC curve reveals adiponectin to perform outstandingly as a diagnostic test for insulin receptoropathy (Fig 1A). Adiponectin above 7 mg/l in severe insulin resistance has a 97% PPV for insulin receptoropathy, while a level below 5 mg/l has a 97% NPV (Fig 1A). The only patient with insulin receptoropathy and adiponectin below 5 mg/l had morbid obesity and the heterozygous Cys225Ser insulin receptor mutation. This probably represents receptor haploinsufficiency producing severe insulin resistance only in
conjunction with obesity, and suggests a “gray area” where adiponectin is a less accurate screening test. Adiponectin below 8 mg/l had a 100% NPV for type B insulin resistance when genetic insulin receptoropathies were excluded. Similar analyses were undertaken for IGFBP-1 and SHBG (Figs 1B and 1C respectively), suggesting diagnostic thresholds of 20 g/l for IGFBP-1 (PPV for level above 20 = 81%; NPV for level below 20 = 83%) and 60 nmol/l for SHBG (PPV for level above 60 = 83%; NPV for level below 60 = 75%). While these analytes are thus of value in discriminating insulin receptoropathy, neither performs as well as adiponectin.

Diagnosis of insulin receptoropathy has several benefits: it allows consideration of immunomodulatory therapy in type B insulin resistance, while identification of severe autosomal recessive genetic defects enables future antenatal testing. Furthermore confirming milder autosomal dominant defects permits family screening, often leading to identification of hitherto undiagnosed, severely insulin resistant diabetes in relatives.

There are important caveats, however. The suggested thresholds must only be applied in the context of severe insulin resistance, as around 50% of healthy controls have adiponectin levels above these values. Moreover, as adiponectin levels are high in healthy infants, and as the youngest patient with receptoropathy in this report was 4 years old, the thresholds should not be used to screen for insulin receptoropathy in younger children without further study. Finally, lack of a universal adiponectin reference standard means that there are significant between-assay differences in calibration. Comparison of the autoDELFIA assay used here with a widely used radioimmunoassay (Linco) suggests that values in this report should be multiplied by 1.7 if applied to adiponectin measured using that radioimmunoassay (Online Appendix 2), and similar comparisons should be undertaken for each different adiponectin assay.

CONCLUSIONS

Assay of plasma adiponectin in patients with severe insulin resistance affords a simple and inexpensive means of discriminating patients with loss of insulin receptor function, permitting directed genetic or antibody testing. This should facilitate rapid definitive diagnosis in such patients. Plasma IGFBP-1 and SHBG have utility as alternative, although less accurate, diagnostic discriminators.

ACKNOWLEDGEMENTS

We are grateful to all referring clinicians for their involvement in this work, which was funded by the Wellcome Trust (RS: Intermediate Clinical Fellowship 080952/Z/06/Z and SO: Programme Grant 078986/Z/06/Z) and the U.K. NIHR Cambridge Biomedical Research Centre.
REFERENCES

6. Maddux BA, Chan A, De Filippis EA, Mandarino LJ, Goldfine ID: IGF-binding protein-1 levels are related to insulin-mediated glucose disposal and are a potential serum marker of insulin resistance. Diabetes Care 29:1535-1537, 2006
FIGURE LEGEND

FIGURE 1. Receiver Operating Characteristics Analysis of A) Adiponectin, B) IGFBP-1 and C) SHBG as Diagnostic Discriminators of Insulin Receptor Dysfunction in Patients with Severe Insulin Resistance. 20 patients with insulin receptor mutations (17 female, 3 male; mean age 18.1 years (range 4-46)), 14 patients with antibody-mediated insulin receptor dysfunction (all female; mean age 47.5 years (range 12-81)), and 81 patients with severe insulin resistance but no insulin receptor mutation nor antibodies (66 female, 15 male; mean age 27.4 years (range 1.8-66)) were used in the adiponectin analysis. Available subsets of these groups were used for IGFBP1 (13, 14 and 34 patients respectively) and SHBG (20, 14 and 35 patients respectively) analyses. PPV = positive predictive value for insulin receptor dysfunction; NPV = negative predictive value for insulin receptor dysfunction.