Neurological Features and Enzyme Therapy in Patients with Endocrine and Exocrine Pancreas Dysfunction Due to CEL Mutations

Mette Vesterhus1,2, MD, Helge Ræder1,2, MD PhD, Harald Aurlien3, MD, Clara G. Gjesdal4, MD PhD, Cecilie Bredrup5, MD, Pål I. Holm4, MD, Anders Molven6, PhD, Laurence Bindoff1,3, MD PhD, Arnold Berstad4, MD PhD, Pål R. Njølstad1,2, MD PhD

From the 1Department of Clinical Medicine, University of Bergen, Bergen, Norway; 2Department of Pediatrics, Haukeland University Hospital, Bergen, Norway; 3Department of Neurology, Haukeland University Hospital, Bergen, Norway; 4Institute of Medicine, University of Bergen, Bergen, Norway; 5Department of Ophthalmology, Haukeland University Hospital, Bergen, Norway; 6The Gade Institute, University of Bergen, Bergen, Norway.

Address correspondence and reprint requests to:
Professor Pål Rasmus Njølstad MD PhD
E-mail: pal.njolstad@uib.no

Running title: Neurology and Enzyme Therapy in the CEL syndrome

Received 5 December 2007 and accepted 28 May 2008.

Additional information for this article can be found in an online appendix at http://care.diabetesjournals.org.
Objective – To define further clinical features associated with the syndrome of diabetes and pancreatic exocrine dysfunction due to mutations in the carboxyl-ester lipase (CEL) gene and assess the effects of pancreatic enzyme substitution therapy.

Research Design And Methods – Nine patients with CEL mutation, exocrine deficiency and diabetes were treated and followed for 30 months.

Results – Treatment improved symptoms in 7/9 patients. Exocrine and endocrine function assessed by fecal elastase and HbA1c were not influenced, although fecal lipid excretion was reduced. Vitamin E was low in all patients, but increased with treatment ($P < 0.001$ at 30 months) and improved in five subjects. A predominantly demyelinating neuropathy was seen in a majority of patients and carpal tunnel syndrome was frequent.

Conclusions – Pancreatic enzyme substitution alleviated symptoms and malabsorption and normalized vitamin E levels. Glycemic control was not significantly affected. The CEL syndrome seems associated with a demyelinating neuropathology.
We recently described the syndrome of diabetes and exocrine pancreas dysfunction due to mutations in the carboxyl ester lipase (CEL) gene (1; 2). In the present work, we assessed the effects of pancreatic enzyme substitution therapy (PEST) on the endocrine and exocrine pancreatic function of mutation carriers with exocrine insufficiency. In addition, neurological features associated with the syndrome were reviewed.

RESEARCH DESIGN AND METHODS:
The patients were recruited from Family 1 in ref. (1). Nine patients having diabetes and severely reduced fecal elastase level were studied. Six additional patients were included for studies of the neurological features. The patients were given standard PEST and followed for 30 months. Online Appendix 1 describes the study design, protocol, determination of exocrine dysfunction and statistical analysis (Appendix 1 is available at http://care.diabetesjournals.org).

RESULTS
Baseline characteristics of the nine patients are given in Online Appendix Table 1 and results after treatment are shown in Fig. 1 and Online Supplementary Table 3. Two patients dropped out of the study, after one and six months, because of side effects.

Six patients identified loose stools as major complaint. Seven reported immediate improvement of abdominal symptoms with treatment. However, the effect was unsatisfactory for the majority, and doses were subsequently increased.

Baseline fecal elastase values were below 10 μg/g in all patients, compatible with severe exocrine deficiency, and did not change with treatment. HbA1c was moderately high at baseline and did not change. Pretreatment BMI was normal (24.0 kg/m² [18-32]). Mean body weight increased by 3 kg after 12 months of treatment (P = 0.01).

Seven patients had steatorrhea at baseline. At 30 months, fat excretion was reduced in all four patients studied (from 35 [25-43] to 22 [12-37] g/day; P = 0.01). Vitamin E levels were low in all patients but increased with treatment (from 7.6 [2.8-10.1] to 13.2 [5.5-14.1] μmol/l; P = 0.03) and normalized in five of seven subjects after 12 months. Levels of vitamins D and A were in the lower normal range; vitamin D levels remained unchanged, while vitamin A values increased with PEST (from 1.1 [0.5-1.4] to 1.6 [1.3-1.7] μmol/l; P = 0.03). There was a small but significant increase in total cholesterol, HDL and LDL but no change in triglycerides. Osteoporosis was diagnosed in three and osteopenia in two patients at baseline. BMD did not change.

Neurological findings: The neurological findings are described in Online Appendix Table 2. Electrophysiological studies revealed peripheral neuropathy with slowing of nerve conduction consistent with a demyelinating etiology in ten of 15 subjects. Four had additional EMG pathology suggesting axonal damage. There was no correlation between diabetes duration and symptom severity. Five subjects had symptoms and electrophysiological signs of carpal tunnel syndrome.

MRI showed multiple high signal lesions in the cerebral periventricular white matter in Patient IV-11 consistent with her MS diagnosis. Subject III-9 had scattered high signal lesions in the supratentorial white matter and his daughter had one periventricular high signal lesion. They showed no clinical evidence of central nervous system disease.

There was no effect on neurological symptoms after 12 months of treatment.
CONCLUSIONS

PEST constitutes the main treatment of maldigestion secondary to exocrine pancreatic insufficiency. Symptomatic effect in our patients was immediate, probably due to improved absorption as indicated by decreased fecal fat excretion and normalization of serum vitamin E. It is well recognized that fat excretion is seldom normalized by PEST. Exocrine function, as assessed by fecal elastase, did not improve. This was anticipated, as the very low elastase values probably reflect end-stage pancreatic disease. Glycemic control remained unchanged, confirming recent results from a study examining enzyme replacement in type 1 diabetes with exocrine dysfunction (3).

A high prevalence of exocrine insufficiency has been reported in both type 1 and type 2 diabetes (4), and HNF1A and HNF1B MODY(5; 6). Claims that this deficiency is moderate and non-progressive and therefore clinically irrelevant (7), are contradicted by the finding of pathologically high fat excretion in diabetic patients with fecal elastase deficiency (4). An independent correlation between fecal elastase levels and, respectively, glycemic control and residual beta cell function, has been reported (8).

A predominantly demyelinating neuropathy was present in ten of 15 patients. Only four patients had evidence of axonal damage. While neuropathy is common in diabetes, particularly in the presence of chronically poor glycemic control, this is typically an axonopathy (9) although demyelinating changes are described (10). Our patients exhibited few signs of long-standing hyperglycaemia (Table 1 online). No correlation between disease duration and presence of neuropathy was seen. Five patients had carpal tunnel syndrome, confirming the association between diabetes and compression neuropathy.

Vitamin E deficiency affects both the central and peripheral nervous systems (11). The associated peripheral neuropathy is most often axonal (11), although demyelinating neuropathy also occurs (12). Vitamin E levels improved following treatment, but the electrophysiological findings and patients sensory symptoms did not. This is consistent with the situation in primary vitamin E deficiency where supplementation at best stabilizes the condition. Fat malabsorption and/or chronic vitamin E deficiency may contribute to neurological manifestations seen in our family.

In conclusion, demyelinating peripheral neuropathy appears to be a consistent feature of the CEL syndrome, but whether this is directly connected to the mutation or secondary to malabsorption and/or diabetes, is unclear, and warrants further study. PEST alleviated symptoms, reduced fecal fat excretion and improved vitamin A and E status, but not glycemic control. Vitamin status should be checked in patients with diabetes and fecal elastase deficiency because it may indicate treatable malabsorption.

ACKNOWLEDGEMENTS:

We thank Liv Aasmul for practical assistance. This study was supported in part by funds from Haukeland University Hospital, Innovest, University of Bergen (Translational Grant), and the Norwegian Research Council (FUGE Program).
REFERENCES
Figure legends:

Fig. 1: Effect of PEST treatment on selected clinical variables. Panels A, B, D and F and the upper part of panel C (HbA1c) show development of the variables for each individual, while panel E and the bottom part of panel C show mean values ± SD. A) Mean 72-h fat excretion was increased at baseline (normal values < 7 g/day), and showed reduction after one week (ns), 12 months (ns) and 30 months of treatment (significant reduction compared to baseline for the four patients delivering stool at 30 months). B) Serum concentrations of the fat-soluble vitamin E were below the normal range in all patients at baseline, reflecting malabsorption, but showed significant increase from baseline at six, 12 and 30 months. *P < 0.001; **P < 0.01. C) Glycemic control shown by HbA1c was stable despite a slight but significant weight gain during treatment. The bottom graph (filled circles) shows mean insulin dose per day. D) The absolute weight change from baseline showed inter-individual variation. Some subjects experienced a substantial weight gain. E) All patients had remarkably low serum lipid values at baseline. There was a slight but significant increase at six, 12 and 30 months for total cholesterol (filled circles), HDL (open circles), and LDL (filled triangles). Triglyceride levels (open triangles) did not change significantly. *P ≤ 0.05 for total cholesterol and HDL; **P < 0.01 for total cholesterol, HDL and LDL; ***P < 0.01 for total cholesterol and LDL. F) Bone mass density (BMD) as illustrated by T-score for L2-L5, was increased or remained stable after 30 months of treatment in half of the subjects and had decreased slightly as expected in the others.
Neurology and Enzyme Therapy in the CEL syndrome

Figure E

Graph showing serum lipids (mmol/L) over time (baseline, 1 week, 12 months, 30 months). The graph indicates a significant increase in serum lipids over the 30-month period, marked with asterisks (*).

Figure F

Graph showing BMD T-score for L2-L5 (% change from baseline) over time (baseline, 12 months, 30 months). The graph shows a significant increase in BMD T-score over the 30-month period, with different markers representing different treatment groups.