Insulin administration and rate of glucose appearance in people with type 1 diabetes

Pennant Mary E PhD, Bluck Leslie JC D Phil, Marcovecchio Loredana M MD, Salgin Burak BA, Hovorka Roman PhD, and Dunger David B MBBS, MD, FRCP

1 Medical Research Council Human Nutrition Research, Cambridge, UK
2 Department of Paediatrics, University of Cambridge, Cambridge, UK
3 Department of Public Health, University of Birmingham, Birmingham, UK

Corresponding author:
Mary Pennant
E-mail: m.pennant@bham.ac.uk

Received 11 April 2008 and accepted 16 July 2008.

This is an uncopyedited electronic version of an article accepted for publication in Diabetes Care. The American Diabetes Association, publisher of Diabetes Care, is not responsible for any errors or omissions in this version of the manuscript or any version derived from it by third parties. The definitive publisher-authenticated version will be available in a future issue of Diabetes Care in print and online at http://care.diabetesjournals.org.
Objective—To assess whether prandial insulin, additional to basal insulin, has an effect on the rate of glucose appearance from a meal in people with type 1 diabetes.

Research Design and Methods—The rate of glucose appearance from a mixed meal (Ra meal) was investigated in six adult (age 24±2 yrs; mean±SD), lean (BMI 23.6±1.5 kgm⁻²) subjects with well controlled type 1 diabetes (duration 7.9±6.9 yrs, HbA1C 7.6±0.9%) with/without prandial insulin. Actrapid was infused to maintain euglycaemia before meals were consumed. Subjects consumed two identical meals on separate occasions and Ra meal was measured using a dual isotope method. [6,6-²H₂]glucose was incorporated into the meal (0.081 g/kg body weight) and a primed, constant/variable rate, infusion of [1,2,3,4,5,6,6-²H₂]glucose was administered. In the tests with prandial insulin, an additional bolus dose of Actrapid was given 20 min before the meal at 0.1U/kg body weight.

Results—Insulin concentration with prandial insulin was significantly higher than during basal insulin studies (119±16 vs 66±15 pmol/L; mean±SEM, p=0.03, paired t-test). Despite differences in insulin concentration, there were no differences in total glucose appearance (3398±197 vs 3307±343 µmol/kg) or time taken for 25% (33.1±3.3 vs 31.7±3.5 min), 50% (54.6±3.5 vs 54.1±4.7 min) or 75% (82.9±7.1 vs 82.8±5.8 min) of total glucose appearance. The fraction of the glucose dose appearing in the circulation was the same for basal (73±8%) and prandial (75±4%) study days.

Conclusions—These results suggest that meal glucose appearance is independent of prandial insulin concentration in people with type 1 diabetes.
Plasma glucose concentration is determined by several factors: the production of glucose by the body, the uptake of glucose by splanchnic and peripheral tissue and the appearance of exogenous glucose from meals (1). Plasma insulin regulates the production and uptake of glucose (2,3) but its role in regulating rates of glucose appearance from meals (Ra meal) is uncertain.

Ra meal is determined by the rate at which glucose is emptied from the stomach, absorbed across the intestinal membrane and by the extent of extraction during first pass of the liver and other splanchnic tissues, before reaching the general circulation. The modification by insulin of any of these processes would act to regulate post-prandial glucose levels and be an important consideration for people with diabetes. In particular, for people with type 1 diabetes, the effect of insulin on Ra meal has important implications for the timings of prandial insulin injections and the appropriateness of pre/post meal insulin dosing.

Research in this area is limited and, although there is some in vitro and in vivo evidence that insulin plays a role in regulating glucose appearance in rats (4-6), these findings have yet to be reproduced in human studies. In people with poorly controlled type 1 diabetes, Ra meal was normal and unchanged with intensive insulin therapy (7). However, these studies were designed to investigate the effects of longer-term hyperglycaemia/insulin deficiency and the effect of acute insulin deficiency on Ra meal was not independently investigated.

No study to date has examined the immediate, independent effect of bolus exogenous insulin administration on Ra meal in people with type 1 diabetes. This study therefore aimed to compare Ra meal in the presence of prandial insulin with that measured at basal insulin concentrations in people with type 1 diabetes.

RESEARCH DESIGN AND METHODS

Subjects—The study was approved by Norfolk local research ethics committee and written, informed, consent was obtained from each subject before participation. Volunteers with type 1 diabetes were invited to the Medical Research Council Human Nutrition Research (MRC HNR) where their blood pressure (BP) and haemoglobin were determined. HbA1C levels were measured and subjects excluded if they had elevated BP, anaemia or HbA1C >11%. Six lean (BMI 23.6±1.5 kgm⁻²), adult (24±2 y) subjects (8,8) with well controlled type 1 diabetes (duration 7.9±6.9 yrs, HbA1c 7.6±0.9%), treated with multiple daily injection (MDI) regimens, were recruited.

Study protocol—All subjects participated in two study days where their response to glucose incorporated into a solid meal (sweet pancakes) was measured. Studies were conducted at Addenbrooke’s Hospital Wellcome Trust Clinical Research facility (WTCRF). Subjects were admitted to the WTCRF volunteer suite facility at 1800h on the evening prior to each study day and two cannulas were inserted into antecubital veins, one for frequent blood sampling and one for intravenous infusions. Subjects were given an evening meal of their choice, identical on each study visit, and took their normal short-acting prandial insulin dose. Subjects omitted their usual long-acting evening insulin dose and, overnight, plasma glucose levels were stabilised using a variable-rate intravenous insulin infusion (Actrapid) based on the recommendation of a model-predictive controller (9).

At 0600h the next day, a primed (1mg/kg), intravenous infusion of [1,2,3,4,5,6,6-²H₂]glucose (0.1 mg/kg/min) was begun and continued for the duration of
studies. As implemented by other investigators (8), in order to minimise non-
steady state errors in calculating the endogenous glucose production (EGP),
changes in glucose specific activity were reduced by maintaining the tracer
([1,2,3,4,5,6,6-2H2]glucose) to tracee (endogenous glucose component) ratio as
constant as possible. During studies at basal insulin, where no change in EGP was
anticipated, the infusion rate of [1,2,3,4,5,6,6-2H2]glucose was maintained constant. In
studies when an additional bolus dose of insulin was administered, EGP was
anticipated to vary and infusion rates were reduced accordingly: 0-10 min 100%, 10-20
min 95%, 20-30 min 80%, 30-40 min 70%, 40-50 min 45%, 50-60 min 40%, 60-110 min
35%, 110-140 min 40%, 140-180 min 45%, 180-240 min 55%, 240-270 min 65% and
270-300 min 70%. At 0700h the intravenous insulin infusion was fixed at the average rate
required to maintain euglycaemia for the previous hour and maintained constant for the
remainder of the study day.

At approximately 0800h on both study
days, subjects were given a meal (sweet
pancakes) with energy derived as 45% from
carbohydrate, 40% from fat and 15% from
protein sources and contained 0.9g glucose
per kg body weight. Meal size was adjusted
for body weight (8kcal/kg body weight) and
[6,6-2H2]-glucose was incorporated to replace
9% of meal glucose. Two baseline blood
samples were taken to establish fasting

Analytical techniques—All blood samples were kept on ice before plasma was
separated by centrifugation and subsequently kept at –80°C until analysis was performed.
Plasma insulin was measured by a 1235 AutoDELFIA automatic immunoassay system
using a two-step time resolved fluorometric assay (Kit No. B080-101, DAKO Ltd., Ely,
Cambridgeshire. U.K, coefficient of variation 2%) using the method previously described
(10). Plasma glucose concentration was
determined from whole blood samples
immediately after each blood sample was
taken using a Yellow Springs Instrument
(Lynchford House, Farnborough, Hants, UK)
and [6,6-2H2]glucose and [1,2,3,4,5,6,6-
2H2]glucose isotopic enrichment was
measured in duplicate by GC/MS using an
Agilent 5973N (Agilent technologies,
Workingham, UK).

**Mathematical methods and
calculations**—The method utilising a two
compartment glucose model and the
maximum likelihood approach combined with
a regularization method was used for
calculation of Ra meal and EGP from the
measured concentrations of glucose, [6,6-
2H2]glucose and [1,2,3,4,5,6,6-2H2]glucose
(11).

The method, originally designed for
the triple tracer meal study design, was
adapted for the dual tracer study design.
Briefly, the method assumes smoothness of (i)
the fractional glucose clearance, (ii) EGP, and
(iii) Rₐmeal whereas the traditional approaches
assume smoothness of the measured
concentrations of native glucose and tracer-to-
tracee ratios (12). The extent of smoothness is
determined by the standard deviation of the
measurement error for native and tracer
glucose. A two compartmental model of
glucose kinetics was assumed with population
values for model parameters identical across
all glucose species with k₂₁ = 0.05 /min, k₁₂ =
0.07 /min, and V₁ = 160 mL/kg body weight
(13) where k₂₁ and k₁₂ represent rate constants.
of glucose transfer between plasma and interstitial glucose compartments and V_1 represents the glucose volume of distribution.

Total glucose appearance was calculated from the AUC of the glucose appearance/time profiles. Time taken for 20, 50, and 75% of total glucose appearance were calculated by assuming a linear profile between appearance rates at each time point. The fraction of ingested glucose appearing in the circulation was calculated as the ratio of total glucose appearance to the dose size administered.

The total amount of glucose appearing in the circulation on each study day was compared using paired t-tests as was the time taken for 25, 50 and 75% of total glucose appearance to take place. Fractional glucose appearance on prandial and basal insulin study days were also compared by paired t-test. Results are presented as mean±SEM (±SD for baseline measurements). Statistical significance was declared at P < 0.05.

RESULTS

Baseline data—Before the meal was given, basal glucose levels were not different on basal (I_B) and prandial (I_P) study days (I_P 5.5±0.5 vs I_B 5.3±0.2 mmol/L, P = NS). As insulin was administered 20 minutes before the meal on prandial insulin study days, basal insulin levels at time 0 were significantly elevated on prandial study days (I_P 119±16 vs I_B 66±15 pmol/L, P = 0.03).

Post-prandial glucose, insulin, R_a and endogenous glucose production—Post-prandial glucose, insulin, R_a and EGP profiles are presented in Figures 1 and 2. On prandial compared to basal insulin study days, there were significantly higher AUC insulin and average insulin concentrations whilst AUC total glucose concentrations were significantly lower (Table 1). There was no difference in total glucose appearance (Table 1), R_a at any time point (Figure 2a) or time taken for 25, 50 and 75% of total glucose appearance to take place (Table 1). The fraction of the glucose dose appearing in the circulation was the same under both conditions and was, on average, 75±4% and 73±8%, P = NS, under prandial and basal conditions respectively. There was no significant difference in total AUC EGP on different study days but different patterns were evident (Figure 2b).

CONCLUSIONS

The current work shows that an exogenous dose of insulin, given prior to a meal, had no significant effect on rates of glucose appearance or total fractional glucose appearance in people with type 1 diabetes.

Insulin and R_a meal

Rat studies suggest that insulin may have important effects on intestinal glucose absorption (4-6). Conversely, a study of dogs showed no effect of insulin on glucose absorption (14) but direct application of animal work to humans may be unsuitable due to differences in the physiology of glucose metabolism.

A study in humans, investigating the effect of hyperglycaemia on meal glucose appearance rate showed that, at plasma glucose concentrations of 6 or 10 mmol/L, R_a was equivalent (15). Pehling et al. investigated rates of glucose appearance in healthy subjects and those with poorly controlled type 1 diabetes and subsequently restudied those with type 1 diabetes during intensive insulin therapy (7). Despite insulin deficiency and fasting and postprandial hyperglycaemia, people with untreated diabetes showed no difference in R_a compared to healthy individuals (7) and, following intensive insulin therapy, there was, similarly, no difference in rates of meal glucose appearance. These studies are in agreement with the current work, where insulin and glucose levels did not appear to affect rates of meal glucose appearance.
If R_a_{meal} is considered to represent the sum of processes of gastric emptying, glucose absorption and first pass splanchnic extraction then, although counterbalancing changes in these processes cannot be ruled out, it seems likely that all three were not affected by plasma insulin concentration. The lack of effect on first pass splanchnic extraction may be surprising. Insulin exerts large effects on peripheral glucose uptake into muscle and adipose tissue (16) and a similar function in splanchnic tissues might be expected. The mode of glucose transport, predominately via GLUT 4 into peripheral tissue and GLUT2 into splanchnic tissue, can explain this difference. GLUT 4 is insulin regulated whilst GLUT 2 is almost entirely regulated by, and directly proportional to, plasma glucose concentration (3) and the absence of an effect by insulin may therefore be expected.

Fractional systemic glucose appearance—The fractional appearance of meal-derived glucose can be determined by the percentage of ingested glucose that appears in the circulation. In the current work, fractional glucose appearance was, on average, $74\pm4\%$ (I_B $73\pm8\%$ vs I_P $75\pm4\%$, $P = \text{NS}$). The difference between glucose ingested and that appearing in the systemic circulation may be accounted for by retention in the small intestine, fermentation to lactate and by splanchnic tissue and liver extraction on first pass into the general circulation. The contribution of glucose fermentation to lactate is thought to be small (17) but direct arterio-hepatic-venous difference experiments have shown first pass hepatic glucose extraction to be important and to be responsible for extracting $\sim5-8\%$ of the ingested dose (18).

Despite this, far lower values, and large variations in fractional glucose appearance have been observed by investigators working in different laboratories. The review by Livesey et al suggests that fractional appearance of glucose following oral glucose administration ranges from 65-104% in healthy adults, people with type 1 or type 2 diabetes (19). There appears to be systematic differences in measurement since errors reported in individual studies are reasonably small compared to the range of mean values obtained.

Although some investigators suggest that differences can be accounted for by retention in the intestinal lumen and first pass hepatic extraction (15), others argue that discrepancies are due to errors in modelling methods used. In the current work, a two compartment model is applied to the dual isotope approach with assumed values for model kinetic parameters. A two-compartmental model has been shown to improve estimates of R_a_{meal} (19) compared to Steele’s one-compartment model (20) and, assuming population values for rate constants, simplifies further calculation of R_a_{meal}. More recently though, investigators argue that the dual isotope method is inadequate and that three tracers are needed for accurate estimation of R_a_{meal} (21). During these comparative studies, although the dual tracer method appeared to underestimate overall systemic glucose appearance (16% lower), profiles for dual and triple tracer techniques were very similar (21) and it may be considered that a two-compartmental dual isotope approach is acceptable.

Incomplete absorption could also explain the lower rates of fractional appearance. Nearly complete absorption has been estimated over 3.5h following an oral glucose load (19) but, following glucose given as part of a mixed meal, >5h was necessary for complete glucose absorption (7). In the current work measurements were made for only 5h but, due to the composition of the meal (carbohydrate in the form of pure glucose), glucose was likely to have been absorbed more rapidly. Indeed, from the average R_a_{meal} profiles (Figure 2A) it appears that absorption was finished and incomplete.
absorption seems unlikely to have been an issue.

From studies reviewed by Livesey et al, there is no difference between average values for fractional appearance rates in healthy people (80.6±3.1%) and those with impaired glucose tolerance/type 2 diabetes (85±2.3%; p=0.31) (19). Only one study investigated total appearance in subjects with type 1 diabetes and the estimate of 93% (7) is well within the range of that observed in healthy individuals. There appears to be no evidence that the fraction of glucose appearing in the systemic circulation is affected in type 1 diabetes and this is supported by the current work, where typical values were obtained.

Exogenous insulin affects not only plasma insulin concentrations but also plasma glucose levels. Since insulin and glucose levels changed simultaneously in opposite directions in the current work (increased insulin but reduced glucose concentrations), it may be speculated that they acted in opposite directions and, by counterbalancing one another, R_a meal remained unchanged. Despite this possibility, the current work still gives evidence for the overall impact of a bolus dose of insulin: R_a meal and total fractional appearance are independent of exogenous insulin administration in people with type 1 diabetes.

In conclusion, the present study suggests that, in people with type 1 diabetes, exogenous insulin administration does not affect post-prandial R_a meal or the fraction of glucose appearing in the circulation. The injection of an insulin dose before or after a meal, in contrast to its affect on glucose utilization, would not affect the rate of glucose appearance. These findings provide important information for people with type 1 diabetes when considering the size and timing of meal-time insulin doses.

ACKNOWLEDGMENTS

This work was funded by the Medical Research Council Human Nutrition Research, Cambridge. We are grateful to study volunteers for their participation and to staff at the Wellcome Trust Clinical Research Facility for their help in conducting studies. Support by the JDRF, EFSD, and NIHR Cambridge Biomedical Research Centre is acknowledged.
Glucose appearance and insulin in diabetes

REFERENCES

Legends:

Figure 1. Plasma insulin (A) and glucose (B) concentrations following a meal under conditions of basal insulin and with an additional insulin bolus at -20 min

Figure 2. Rates of post-prandial meal derived glucose appearance ($R_{a, meal}$) (A) and endogenous glucose production (EGP) (B) following a meal under conditions of basal insulin and with an additional insulin bolus at -20 min
Glucose appearance and insulin in diabetes

Table 1. AUC and mean plasma insulin, AUC and mean plasma glucose, AUC rate of appearance of meal-derived glucose (R_a meal), fractional glucose appearance and time taken for 25%, 50% and 75% appearance on basal insulin (I_B) and prandial insulin (I_P) study days

<table>
<thead>
<tr>
<th></th>
<th>I_B</th>
<th>I_P</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>AUC insulin (nmol/L.300 min)</td>
<td>18.6±5.1</td>
<td>34.1±3.8</td>
<td>0.030</td>
</tr>
<tr>
<td>Mean insulin (pmol/L)</td>
<td>66±15</td>
<td>119±16</td>
<td>0.030</td>
</tr>
<tr>
<td>AUC glucose (mmol/L.300 min)</td>
<td>3351±104</td>
<td>2625±124</td>
<td>0.004</td>
</tr>
<tr>
<td>Mean glucose (mmol/L)</td>
<td>10.9±0.3</td>
<td>8.2±0.6</td>
<td>0.004</td>
</tr>
<tr>
<td>AUC R_a meal (µmol/kg)</td>
<td>3307±343</td>
<td>3398±197</td>
<td>NS</td>
</tr>
<tr>
<td>Fractional appearance (%)</td>
<td>73±8</td>
<td>75±4</td>
<td>NS</td>
</tr>
<tr>
<td>Time taken for glucose appearance (min)</td>
<td>25% dose</td>
<td>31.7±3.5</td>
<td>33.1±3.3</td>
</tr>
<tr>
<td></td>
<td>50% dose</td>
<td>54.1±4.7</td>
<td>54.6±3.5</td>
</tr>
<tr>
<td></td>
<td>75% dose</td>
<td>82.8±5.8</td>
<td>82.9±7.1</td>
</tr>
</tbody>
</table>
Figure 1.
Figure 2.