Baseline quality of care data from a quality improvement program implemented by a network of diabetes outpatient clinics

Maria C. E. Rossi, MSC (PHARM CHEM)\(^1\), Antonio Nicolucci, (MD)\(^1\), Adolfo Arcangeli, (MD)\(^2\), Antonino Cimino, (MD)\(^3\), Gualtiero De Bigontina, (MD)\(^4\), Carlo Giorda, (MD)\(^5\), Illidio Meloncelli, (MD)\(^6\), Fabio Pellegrini, MSC (STAT)\(^1\), Umberto Valentini, (MD)\(^3\), Giacomo Vespasiani, (MD)\(^6\) on behalf of the AMD Annals Study Group*.

\(^1\) Department of Clinical Pharmacology and Epidemiology, Consorzio Mario Negri Sud, S. Maria Imbaro (CH), Italy
\(^2\) A.S. Diabetes and Metabolic Diseases, AUSL 4, Prato, Italy
\(^3\) Diabetes Unit, A.O. Spedali Civili Brescia, Italy
\(^4\) Diabetes Unit, Cadore Hospital, Dolomiti-Belluno, Italy
\(^5\) Diabetes and Metabolism Unit, ASL 8, Chieri (TO), Italy
\(^6\) Diabetes Unit, “Madonna del Soccorso” Hospital, San Benedetto del Tronto (AP), Italy.

*The full list of participants is available in an online appendix at http://care.diabetesjournals.org.

Corresponding Author:
Maria C. Rossi, PHARM CHEM
e-mail mrossi@negrisud.it

Received 6 March 2008 and accepted 1 August 2008.

This is an uncopyedited electronic version of an article accepted for publication in Diabetes Care. The American Diabetes Association, publisher of Diabetes Care, is not responsible for any errors or omissions in this version of the manuscript or any version derived from it by third parties. The definitive publisher-authenticated version will be available in a future issue of Diabetes Care in print and online at http://care.diabetesjournals.org

Copyright American Diabetes Association, Inc., 2008
Objective: To describe patterns of diabetes care and implement benchmarking activities at the national level.

Research Design and Methods: Eighty-six clinics participated, all using electronic medical records. Quality indicators were identified and a software was developed, enabling the extraction of the information needed for quality of care profiling.

Results: Overall, 114,249 patients with T2DM were seen during 2004. HbA1c was measured at least once in 88.0% of the patients, lipid profile in 64.6%, blood pressure in 77.2%, and microalbuminuria in 48.1%. Overall, 43.1% of individuals had HbA1c ≤7.0%, 36.6% had blood pressure ≤130/85 mmHg, and 29.8% had LDL cholesterol <100 mg/dl. Only 5.5% of the patients had achieved all the favorable outcomes. Wide between-center variation was documented for all indicators.

Conclusions: This is the first step of a nationwide quality improvement effort, and documents the possibility to obtain standardized information to be used for diabetes care profiling and benchmarking activities.
Many studies have shown that treatment goals for diabetes and cardiovascular risk factors are not reached in a large proportion of patients (1-3). Furthermore, a close relationship between the quality of diabetes care and risk of cardiovascular events was documented (4).

Several American and European organizations have been working for the development and field-testing of measures for quality of diabetes care (5-7). These measures include process and intermediate outcome indicators, utilized to monitor quality of care and promote continuous improvement initiatives (8-9).

In Italy, all citizens are covered by a government health insurance. Primary care for diabetes is provided by general practitioner (GP) and diabetes outpatient clinics (DOCs). Patients can choose one of the two ways of access to health care system or can be referred to DOCs by their GPs.

In recent years, a continuous improvement effort has been implemented by a network of DOCs, all sharing the same system for data extraction from electronic medical records. This study describes patterns of diabetes care and benchmarking activities implemented at the national level, using a pre-specified set of quality indicators developed by the Associazione Medici Diabetologi (AMD).

RESEARCH DESIGN AND METHODS

Process measures include percentages of patients monitored at least once during the previous 12 months for the following parameters: HbA1c, blood pressure, lipid profile, microalbuminuria (MAU), and foot examination. Intermediate outcome measures include the proportion of patients with HbA1c levels ≤7.0% or ≥8%, blood pressure values ≤130/85 mmHg or ≥140/90 mmHg, and LDL cholesterol levels <100 mg/dl or ≥130 mg/dl.

A software was developed to enable the extraction of the information needed from electronic medical record systems used for the everyday management of outpatients. Data from all DOCs were centrally analyzed anonymously. All indicators were compared to reference values, or “gold standard”, established by identifying the best performers. The gold standard for every indicator was represented by the 75th percentile of the ordered distribution of the results obtained in the centers.

Results were publicized through a specific publication (AMD Annals) and in a dedicated page of the AMD website (10), and discussed with participants in an annual meeting. Each individual centre could also measure its performance directly from the electronic record system, using specific queries. The project was conducted without allocation of extra-resources or financial incentives, but through a physician-led effort, made possible by the commitment of the specialists involved.

We report here the results relative to the year 2004 and concerning T2DM.

To account for the hierarchical nature of the data and to control for the possible confounding effects of the different variables, we used multilevel regression models to investigate inter-center variability expressed as 10th-90th percentile range, adjusted for gender, age and clustering effect.

RESULTS

Overall, 114,249 patients were seen by 86 DOCs during 2004. Fifty-three percent of the patients were males, 56% were aged >65 years, 11.1% were on diet alone, 63.3% were treated with oral agents and 25.3% with insulin±oral agents.

Results relative to process indicators, reported in the table, show the gap between the gold standard and the whole sample of DOCs. As for inter-center variability in the
process measures, a moderate variation for HbA1c monitoring was documented, while a wide heterogeneity in between-center performance was present for blood pressure, lipid profile, MAU, and foot monitoring.

Results relative to outcome measures are reported in the table. A small minority of the patients had achieved all the favorable outcomes (5.5%), while in 8.8% none of the goals were reached. The comparison with the gold standard showed a 10-20% lower rate of patients at target in the whole population as compared with individuals cared for by the best performers.

A wide variation was documented also for the outcome measures, associated with a parallel inter-center variation in the use of specific drug classes. For example, prescription rates for statins and ACE-inhibitors ranged between 13.2% and 35.5% and between 14.2% and 29.4%, respectively.

CONCLUSIONS
Our study documents the feasibility of conducting practice-based quality-of-care studies across large numbers of outpatient practices, after having reached a consensus in how to measure quality in priority areas. This was a preliminary, fundamental step to promote continuous critical evaluation of current practice, develop process improvements, and reduce practice variation.

The “best performers” approach represented a key feature of the continuous quality improvement effort implemented. In fact, clinicians did not face with theoretical standards, often perceived as unrealistic in their setting, but rather with the performance of centers operating in the same health care system, under similar conditions. By comparing their own performance with that of centers reaching better results, specialists could easily realize the real margin of improvement made possible by increasing the level of attention to disease monitoring and treatment.

The analysis of process indicators shows that the level of performance is consistently higher for some parameters, such as HbA1c, blood pressure and lipid monitoring, than others such as MAU monitoring or foot examination. The evaluation of between-center variability further documents that heterogeneity in the rate of performance of some process measures, such as lipids, MAU, and foot monitoring.

As for the outcomes considered, our study confirms the difficulties in reaching therapeutic goals. The comparison with the gold standard emphasizes the gap existing between the results achieved in the whole sample and those attained by the best performers. We also documented a wide variation in the ability to reach the targets recommended by existing guidelines, although part of this variation could be related to factors not taken into consideration (e.g. diabetes duration and complications). Nevertheless, such a variability was paralleled by strikingly different rates of prescriptions of specific drugs, thus suggesting a strong need for treatment intensification.

In conclusion, our study describes the first step of a nationwide quality improvement effort and documents that it is possible to obtain standardized information to be used for initiatives of diabetes care profiling and benchmarking. The yearly evaluation of patterns of care, the dissemination of results, and their discussion with the participants is expected to improve the performance of diabetes clinics and reduce variability (9).

ACKNOWLEDGEMENTS
Lifescan provided a research grant for the data analysis.
REFERENCES
Table 1. Process and outcome indicators in centers representing the best performers for each indicator and in the overall sample. The last column reports the inter-center variability (interquartile range) for the overall sample, adjusted for clustering effect, age and gender.

<table>
<thead>
<tr>
<th>Quality indicator</th>
<th>Best performers (mean±sd or %)</th>
<th>Overall sample (mean±sd or %)</th>
<th>Inter-center variability (10th - 90th percentile)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Process measures</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HbA1c ≥1/year</td>
<td>96.8</td>
<td>88.0</td>
<td>66.0-96.9</td>
</tr>
<tr>
<td>Blood pressure ≥1/year</td>
<td>95.5</td>
<td>77.2</td>
<td>17.7-98.0</td>
</tr>
<tr>
<td>Lipid profile ≥1/year</td>
<td>88.4</td>
<td>64.6</td>
<td>15.5-89.9</td>
</tr>
<tr>
<td>Microalbuminuria ≥1 year</td>
<td>76.7</td>
<td>48.1</td>
<td>0.0-89.7</td>
</tr>
<tr>
<td>Foot examination ≥1/year</td>
<td>49.5</td>
<td>22.4</td>
<td>0.1-59.3</td>
</tr>
<tr>
<td>Outcome measures</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HbA1c (%)</td>
<td>7.0±1.3</td>
<td>7.4±1.5</td>
<td>6.9-8.2</td>
</tr>
<tr>
<td>≤7.0%</td>
<td>58.1</td>
<td>43.1</td>
<td>20.9-59.5</td>
</tr>
<tr>
<td>≥8.0%</td>
<td>18.2</td>
<td>29.7</td>
<td>17.3-52.1</td>
</tr>
<tr>
<td>Systolic blood pressure (mmHg)</td>
<td>134±16</td>
<td>141±19</td>
<td>134-150</td>
</tr>
<tr>
<td>Diastolic blood pressure (mmHg)</td>
<td>77±9</td>
<td>81±10</td>
<td>77-85</td>
</tr>
<tr>
<td>≤130/85 mmHg</td>
<td>48.7</td>
<td>36.6</td>
<td>44.0-78.0</td>
</tr>
<tr>
<td>≥140/90 mmHg</td>
<td>45.4</td>
<td>66.2</td>
<td>20.1-50.6</td>
</tr>
<tr>
<td>LDL cholesterol (mg/dl)</td>
<td>110±32</td>
<td>118±33</td>
<td>113-125</td>
</tr>
<tr>
<td><100 mg/dl</td>
<td>39.5</td>
<td>29.8</td>
<td>23.4-35.1</td>
</tr>
<tr>
<td>≥130 mg/dl</td>
<td>26.4</td>
<td>35.1</td>
<td>28.3-43.2</td>
</tr>
</tbody>
</table>