Plasma Apolipoprotein CI and CIII levels are associated with increased plasma triglyceride levels and decreased fat mass in men with the metabolic syndrome

Rachel L.M. van der Ham, MD¹, Reza Alizadeh Dehnavi, MD¹, Jimmy F.P. Berbée, PhD², Hein Putter, PhD³, Albert de Roos, MD PhD⁴, Johannes A. Romijn, MD PhD³, Patrick C.N. Rensen, PhD², Jouke T. Tamsma, MD PhD¹

¹Section of Vascular Medicine, Department of Endocrinology and Internal Medicine, ²Department of Endocrinology and Internal Medicine, ³Department of Medical Statistics, ⁴Department of Radiology, Leiden University Medical Center, The Netherlands

Corresponding author:
Rachel van der Ham.
Email: r.l.m.van_der_ham@lumc.nl

Additional information for this article can be found in an online appendix at http://care.diabetesjournals.org.

This is an uncopyedited electronic version of an article accepted for publication in Diabetes Care. The American Diabetes Association, publisher of Diabetes Care, is not responsible for any errors or omissions in this version of the manuscript or any version derived from it by third parties. The definitive publisher-authenticated version will be available in a future issue of Diabetes Care in print and online at http://care.diabetesjournals.org.
Objective - To determine whether, in accordance with observations in mouse models, high concentrations of the lipoprotein lipase inhibitors Apolipoprotein (Apo) CI and ApoCIII are associated with increased triglyceride concentrations and decreased fat mass in men with the metabolic syndrome (MS).

Research design and methods - Plasma ApoCI, ApoCIII and triglyceride concentrations were measured in the postabsorptive state in 98 men with the MS. Subcutaneous and visceral fat areas were measured by 3T-MRI.

Results - Triglyceride concentrations were 49% higher, and the average visceral fat area was 26% lower (both p<0.001), in subjects with high ApoCI and ApoCIII compared to low ApoCI and ApoCIII. Subjects with either high ApoCI or ApoCIII had 16% (p<0.05) and 18% (p<0.01) decreased visceral fat area, respectively.

Conclusions - High concentrations of ApoCI and ApoCIII are associated with increased triglycerides and decreased visceral fat mass in men with the MS. These findings translate mouse studies into human pathophysiology.
Apolipoprotein CI (ApoCI) and ApoCIII are present on HDL and triglyceride (TG)-rich lipoproteins (1), and mainly affect plasma lipid metabolism by inhibition of lipoprotein lipase (LPL) (2). This enzyme hydrolyses TG in VLDL and chylomicrons, releasing fatty acids for storage by adipocytes or for energy metabolism in muscles (2,3). Overexpression of human ApoCI in mice increases VLDL-associated TG plasma levels in combination with decreased body fat (4). The effect of ApoCIII overexpression is unknown, but ApoCIII-deficiency in mice led to lower VLDL-associated TG levels, and increased diet-induced obesity (5). Since it has recently been shown that LPL activity is higher in visceral adipose tissue (VAT) compared to subcutaneous adipose tissue (SAT) (6), LPL inhibitors such as ApoCI and ApoCIII may differentially affect VAT compared to SAT. The objective of this study was to determine whether, like in mouse models, high ApoCI and ApoCIII concentrations are associated with increased TG concentrations and decreased VAT and SAT area in men with the MS.

RESEARCH DESIGN AND METHODS

We studied 98 male subjects aged 50-70 years with the MS (defined using International Diabetes Federation criteria (7)). Exclusion criteria were the presence of type 2 diabetes mellitus, overt cardiovascular disease, use of statins or fibrates, and a body mass index above 40 kg/m². The study protocol was approved by the Local Ethics Committee. Blood samples were collected after a 12-hour overnight fast. Plasma concentrations of ApoCI and ApoCIII were determined using sandwich ELISAs specific for human ApoCI and ApoCIII (8).

MRI, measuring SAT and VAT area at the level of the intervertebral disk level between the 4th and 5th lumbar vertebra, was performed on a 3T scanner (Philips, Achieva, Best, The Netherlands) as described previously (9).

To address the question whether high ApoCI, high ApoCIII, and the combination of high ApoCI and ApoCIII are associated with increased TG concentrations and decreased VAT and SAT area, the study subjects were divided into groups according to median ApoCI concentration (6.38 mg/dL; skewed distribution) and mean ApoCIII concentration (10.2 mg/dL; normal distribution).

Statistical analyses were performed using SPSS version 14.0 for Windows. The level of significance was set at 0.05. Differences in clinical and laboratory parameters, SAT and VAT area were assessed by independent T test or one-way analysis of variance, with post hoc least significant difference testing, if appropriate. Mann-Whitney tests or Kruskall-Wallis tests (followed by Mann-Whitney tests, p values were multiplied by 3 to correct for multiple testing) were performed for parameters that were not normally distributed. Smoking frequency was assessed by Pearson Chi-square tests. Correlations were calculated using Spearman’s rho.

RESULTS

Clinical and laboratory parameters, including waist circumference and HOMA, were not different between the four groups, apart from HDL-cholesterol, total cholesterol, and smoking (See Table A1a in the online appendix at http://care.diabetesjournals.org). There were more smokers in the group with high ApoCIII compared to low ApoCIII (33% and 7%, respectively, p<0.01).

ApoCI and ApoCIII levels were positively correlated (rho=0.405, p<0.001). TG concentrations were 49% higher in subjects with both high ApoCI and ApoCIII compared with subjects with low ApoCI and ApoCIII.
ApoCIII (p<0.001) (Figure 1a). Subjects with both high ApoCI and ApoCIII had 26% decreased VAT area (p<0.001) and 7% lower SAT area (not significant) compared with subjects with both low ApoCI and ApoCIII levels (Figure 1b). Subjects with ApoCI above the median had 16% lower VAT area (p<0.05) and 3% higher SAT area (not significant). Subjects with ApoCIII above the median had 18% lower VAT area (p<0.01) and 14% lower SAT area (not significant).

To exclude the difference in smoking frequency as a possible confounder, the analysis was repeated after exclusion of smokers. TG levels were slightly lower, but both for TG and VAT area, the results remained highly significant (Online appendix table 1b).

CONCLUSION

High ApoCI and ApoCIII concentrations are associated with increased TG concentrations and decreased VAT area in men with the MS.

The phenotypic appearances caused by modulation of ApoCI and ApoCIII may be very relevant for human subjects with the MS, as visceral obesity and increased TG levels are two of its main characteristics (7). In addition, intra-abdominal fat is presumed to be an important determinant of metabolic dysregulation (10, 11). The data presented in this study are in line with experimental data and indicate that the mechanisms uncovered by these experimental studies can be translated to the human situation. To be more precise, these data suggest that the known inhibition of LPL by ApoCI and ApoCIII contributes to higher TG and lower VAT area in human subjects. Furthermore, the difference in effect of ApoCI and ApoCIII on TG concentrations observed in this study, underlines the stronger inhibition of LPL by ApoCIII compared to ApoCI as shown in experimental studies (2).

ApoCI and ApoCIII levels were mainly related to the VAT compartment. This can be related to a higher expression of LPL in VAT versus SAT, as evident from experimental studies in mice (6). Alternatively, LPL may be differently regulated in various fat depositions (e.g. VAT versus SAT). This adds to the discussion relating LPL to fat deposition, as studies comparing LPL mass, activity and mRNA expression between subcutaneous and visceral fat have shown contradictory results (10, 12, 13). The difference in smoking frequency has not confounded our results, because when the analysis was repeated after exclusion of smokers, almost identical results were obtained.

The current observations are restricted to male, abdominally obese subjects, aged 50-70 years, without type 2 diabetes or cardiovascular disease. Nevertheless, this study shows that in men with the MS high ApoCI and ApoCIII levels are associated with increased TG levels and decreased visceral fat mass, which is in line with in vivo data from mouse models. This study is the first to address the effect of LPL regulation on adipose tissue deposition in humans, and necessitates further studies on the effect of LPL, the LPL coactivator ApoCII, and their polymorphisms on adipose tissue mass.

Disclosure—None
ApoCI, apoCIII, triglycerides and fat mass

References
2. Berbee JF, van der Hoogt CC, Sundararaman D, Havekes LM, Rensen PC: Severe
hypertriglyceridemia in human APOC1 transgenic mice is caused by apoC-I-induced
3. van Dijk KW, Rensen PC, Voshol PJ, Havekes LM: The role and mode of action of
apolipoproteins CIII and AV: synergistic actors in triglyceride metabolism? Curr Opin
Lipidol 15:239-246, 2004
Protection from obesity and insulin resistance in mice overexpressing human
Apolipoprotein C3 deficiency results in diet-induced obesity and aggravated insulin
resistance in mice. Diabetes 54:664-671, 2005
KW, Frants RR, Hofker MH, Rensen PC: The Hyplip2 locus causes hypertriglyceridemia
Lancet 366:1059-1062, 2005
8. Schippers EF, Berbee JF, van D, I, Versteegh MI, Havekes LM, Rensen PC, van Dissel JT:
Preoperative apolipoprotein CI levels correlate positively with the proinflammatory
response in patients experiencing endotoxemia following elective cardiac surgery. Intensive
Care Med .: 2008
CRP levels are associated with increased carotid atherosclerosis independent of visceral
obesity. Atherosclerosis .: 2008
10. Montague CT, O'Rahilly S: The perils of portliness: causes and consequences of visceral
lipase activity/mass ratio is higher in omental than in subcutaneous adipose tissue. Eur J
Clin Invest 36:16-21, 2006
leptin and plasma insulin are associated with lipoprotein lipase activity in severely obese
Figure Legend

Figure 1. Illustration of the inverse relationship of ApoCI and ApoCIII concentrations with plasma triglyceride concentration (positive, figure 1a) and with visceral adipose tissue area (negative, figure 1b).

ApoCI/ApoCIII<median/mean="low", ApoCI/ApoCIII>median/mean="high".

Triglyceride concentration: 1 vs 3, 1 vs 4 and 2 vs 4: P<0.001. 2 vs 3: p<0.01. Visceral adipose tissue area: low ApoCI and ApoCIII vs high ApoCI and ApoCIII: p<0.001.