Circulating levels of adipocyte and epidermal fatty acid-binding proteins in relation to nephropathy staging and macrovascular complications in type 2 diabetic patients

Dennis CY Yeung1,4 BSc, Aimin Xu1,2,4 PhD, Annette WK Tso1,4 MD, WS Chow1 MD, Nelson MS Wat1 MD, Carol HY Fong1 BSc, Sidney Tam5 MD, Pak C Sham3 MD and Karen SL Lam1,4 MD

Departments of 1Medicine, 2Pharmacology and 3Psychiatry, and 4Research Centre of Heart, Brain, Hormone and Healthy Aging, Li Ka Shing Faculty of Medicine, University of Hong Kong, and 5Clinical Biochemistry Unit, Queen Mary Hospital, HKSAR, China

Corresponding Author:
Prof. Karen SL Lam
Email: ksllam@hkucc.hku.hk

Additional information for this article can be found in an online appendix at http://care.diabetesjournals.org.

This is an uncopyedited electronic version of an article accepted for publication in Diabetes Care. The American Diabetes Association, publisher of Diabetes Care, is not responsible for any errors or omissions in this version of the manuscript or any version derived from it by third parties. The definitive publisher-authenticated version will be available in a future issue of Diabetes Care in print and online at http://care.diabetesjournals.org.
Objective: To investigate the relationship of serum adipocyte-fatty acid-binding protein (A-FABP) and epidermal-fatty acid binding protein (E-FABP) with renal dysfunction and macrovascular complications in type 2 diabetic patients.

Research design and methods: The associations of serum A-FABP and E-FABP with markers of renal function, nephropathy staging and macrovascular complications were examined in 237 type 2 diabetic patients.

Results: Serum A-FABP and E-FABP correlated significantly with serum creatinine, mean albumin excretion rate and glomerular filtration rate (all $P < 0.001$), and were independently associated with diabetic nephropathy staging ($P = 0.001$ and $P < 0.05$ respectively). Circulating levels of both FABPs were increased ($P < 0.01$) in subjects with macrovascular complications. Serum A-FABP was independently associated with macrovascular complications (OR: 2.92; 95% CI: 1.42 – 6.01, $P = 0.004$).

Conclusions: Serum A-FABP and E-FABP might be novel serum biomarkers for evaluating the progression of nephropathy and its cardiovascular risk in diabetic patients.
A
dipocyte fatty acid-binding protein (A-FABP) and epidermal fatty acid-binding protein (E-FABP), being highly expressed in adipocytes and macrophages, have been shown to mediate obesity-related metabolic disorders and atherosclerosis in animal studies (1). We have recently demonstrated that both FABPs circulate in the human bloodstream (2, 3), with levels closely associated with parameters of adiposity, insulin resistance, the metabolic syndrome and carotid atherosclerosis (2-4). This study examined the relationship of circulating A-FABP and E-FABP with diabetic nephropathy and its associated macrovascular complications in 237 type 2 diabetic (T2DM) patients with different nephropathy staging.

RESEARCH DESIGN AND METHODS
This cohort included 237 Chinese T2DM patients [age: 55.8 ± 14.2 years; BMI: 25.5 ± 4.3 kg/m²; M/F: 110 / 127] from the Diabetes Clinic, Queen Mary Hospital, with complete set of renal function assessment data collected as part of two previously published studies (3, 5). None was on thiazolidinediones. Informed consent was obtained and the protocol was approved by the local ethics committee.

All subjects were assessed after overnight fasting for at least 10 hours. Details on the assessment for hypertension, various anthropometric and biochemical parameters, serum high sensitivity C-reactive protein (hsCRP), A-FABP (intra-assay CVs: 3.9 – 6.6%; inter-assay CVs: 2.6 - 5.1%) and E-FABP (intra-assay CVs: 4.5 – 4.9%; inter-assay CVs: 5.7 – 5.9%) (BioVendor Laboratory Medicine, Inc., Czech Republic), were reported previously (2-6). Serum soluble TNF receptor II (sTNF RII) was measured with ELISA kits from R&D Systems (Minneapolis, MN, USA).

Mean albumin excretion rate (MAER) was estimated from two consecutive 12-hr overnight urine samples for urinary albumin, assayed nephelometrically. Subjects were classified as normoalbuminuric (MAER < 20 µg/min), microalbuminuric (MAER: 20 – 200 µg/min) or macroalbuminuric (MAER > 200 µg/min) (6). Glomerular filtration rate (GFR) was estimated using the formula from the Modification of Diet in Renal Disease (MDRD) study (7). Macrovascular complications included ischemic heart disease, stroke, or peripheral vascular disease, diagnosed clinically and documented on electrocardiogram/myocardial perfusion scan/coronary angiogram, CT brain scan or Doppler studies, respectively.

All analyses were performed with SPSS 15.0 (SPSS, Chicago, IL). Skewed data were logarithmically transformed. One-way ANOVA or χ^2 test was used for comparisons between groups, and correlations between variables were adjusted using partial correlation. Multiple testing was corrected using Bonferroni correction. Multinomial and binary logistic regressions were used to determine the variables with independent significant associations with nephropathy staging and macrovascular complications, respectively. $P < 0.05$ was considered statistically significant.

RESULTS
There were significant and progressive increases in serum A-FABP and E-FABP across the three stages of diabetic nephropathy (both adjusted P for trend < 0.001) (see Table A1 in the online appendix available at http://care.diabetesjournals.org). Serum A-FABP correlated positively with serum creatinine and MAER, and negatively with MDRD-GFR (all $P < 0.001$, sex-, age- and WC-adjusted) (Figure 1A to 1C). Age- and WC-adjusted serum E-FABP also correlated positively with serum creatinine.
and MAER, and negatively with MDRD-GFR (all \(P < 0.001 \)) (Figure 1D to 1F). The correlations of serum A-FABP or E-FABP with serum creatinine and MDRD-GFR remained significant even after adjusting for LDL-cholesterol, hypertension and sTNF RI (\(P = 0.015 \) to \(< 0.001 \)). There was no significant correlation of either FABP with HbA1c or statin use. Serum E-FABP, but not A-FABP, correlated with adiponectin (\(r = -0.213, P = 0.001 \)).

Multinomial regressions, including factors with biological relevance or significant associations (corrected \(P < 0.05 \)) with nephropathy staging, showed that serum A-FABP was independently associated with nephropathy staging for microalbuminuria vs. normoalbuminuria (OR: 3.04, 95% CI: 1.61 – 5.74, \(P = 0.001 \)), and for macroalbuminuria vs. normoalbuminuria (OR: 4.14, 95% CI: 1.83 – 9.33, \(P = 0.001 \)) together with LDL-cholesterol (OR: 2.15, 95% CI: 1.23 – 3.77, \(P = 0.007 \)) (Online Appendix Table A2). Serum sTNF RII, A-FABP and E-FABP were input one at a time due to their strong correlations (\(r > 0.4, P < 0.001 \)). Repeated analysis yielded similar results for serum E-FABP (OR: 1.83, \(P = 0.035 \) for microalbuminuria vs. normoalbuminuria; OR: 4.93, \(P < 0.001 \) for macroalbuminuria vs. normoalbuminuria).

36 micro- or macroalbuminuric subjects had macrovascular complications. They had higher serum A-FABP and E-FABP (both \(P < 0.01 \)) than subjects with no macrovascular complications (Online Appendix Table A3). Binary logistic regression, which included parameters having significant associations or possible biological relevance with macrovascular complications, revealed that serum A-FABP (OR: 2.92; 95% CI: 1.42 – 6.01, \(P = 0.004 \)) and fasting glucose (OR: 1.15; 95% CI: 1.00 – 1.33; \(P = 0.046 \)) were independently associated with macrovascular complications (Online Appendix Table A4). Serum A-FABP, E-FABP, sTNF RII and MDRD-GFR, being highly correlated, were analyzed one at a time. MDRD-GFR, but not serum E-FABP or sTNF RII, was significantly associated with macrovascular complications (OR: 0.24; \(P = 0.006 \)).

CONCLUSIONS

This study provides novel evidence that serum A-FABP and E-FABP in T2DM patients were independently associated with nephropathy staging, and correlated positively with serum creatinine and negatively with MDRD-GFR, even after adjustment for age, adiposity, LDL-cholesterol, hypertension and sTNF RII. The elevated levels of these FABPs might have resulted from both impaired renal clearance and increased production from activated macrophages in diabetic nephropathy. Macrophage accumulation in the kidney, which increases with the progression of diabetic nephropathy and renal injury (8), is the primary source of inflammation under this pathological condition. Both FABPs are highly expressed in macrophages (1), and several pro-inflammatory stimuli could induce A-FABP expressions in macrophages (9, 10). On the other hand, both FABPs have been implicated as key mediators of inflammation (1). Taken together, macrophage accumulation in the kidney and the augmented expressions of these FABPs in macrophages would aggravate local inflammation and contribute to the progression of diabetic nephropathy.

We have also demonstrated the significant increases of serum A-FABP and E-FABP in macrovascular complications, and the independent association between serum A-FABP and macrovascular complications. These new findings would support a causative role of these FABPs in the pathogenesis of cardiovascular diseases, suggested by previous animal, genetic and epidemiological studies (1, 3, 4, 11).

In summary, our findings raise the possibility that A-FABP and E-FABP may be
used as serum biomarkers for stratifying nephropathy staging and cardiovascular risks in diabetic patients.

ACKNOWLEDGMENTS

This study was supported by the Hong Kong Research Grant Council (HKU7637/05M and 7590/06M to K Lam), and Collaborative Research Fund (HKU 2/07C to A Xu).
REFERENCES
Figure 1 Correlations between serum levels of the two FABPs and indices of renal function. Serum A-FABP levels correlated significantly with serum creatinine (A), MAER (B), and MDRD-GFR (C). Serum E-FABP also correlated significantly with serum creatinine (D), MAER (E), and MDRD-GFR (F).