Changes in Albumin Excretion in the Diabetes Prevention Program

Diabetes Prevention Program Research Group*

*Writing Group: Mark E. Molitch, MD (chair), Elizabeth Barrett-Connor, MD, Jill Crandall, MD, Samia Das, MS, MBA, RD, LD, Ronald Goldberg, MD, Steven Haffner, MD, MPH, Hermes Florez, MD, William C. Knowler, MD, DrPH, Trevor Orchard, MD, Robert Ratner, MD, Marinella Temprosa, MS

(A complete DPP authorship list is available in an online appendix at http://care.diabetesjournals.org)

Address correspondence to:
Diabetes Prevention Program Coordinating Center
E-mail: dppmail@biostat.bsc.gwu.edu

Requests for Single Reprints:
Diabetes Prevention Program Coordinating Center, The Biostatistics Center, George Washington University, 6110 Executive Boulevard, Suite 750, Rockville, MD 20852

Additional information for this article can be found in an online appendix at http://care.diabetesjournals.org.

Clinical trial reg. no. NCT00004992, clinicaltrials.gov

Submitted 5 August 2008 and accepted 6 January 2009.

This is an uncopyedited electronic version of an article accepted for publication in Diabetes Care. The American Diabetes Association, publisher of Diabetes Care, is not responsible for any errors or omissions in this version of the manuscript or any version derived from it by third parties. The definitive publisher-authenticated version will be available in a future issue of Diabetes Care in print and online at http://care.diabetesjournals.org.
Introduction: Increased urinary albumin excretion rates have been linked to nephropathy and macrovascular disease. We here describe the baseline prevalence and effect of Diabetes Prevention Program (DPP) interventions on the development and reversal of elevated albumin excretion.

Methods: Urine albumin/creatinine ratios (ACR) were calculated from untimed urine collections. Analyses compared participants by treatment group, diabetes and hypertension status and use of ACE inhibitors or angiotensin receptor blockers (ARB).

Results: Elevated ACR levels \(\geq 30 \text{ mg/g creatinine}\) were present at baseline in 198 (6.2\%) of 3188 participants: placebo 5.3\%, metformin 6.5\%, and intensive lifestyle (ILS) 6.8\%. Of the 2802 with ACR measurements at baseline and at the end of the study, the percentage with elevated levels declined (incident and regression) from 6.2\% to 6.1\%, with no significant differences between the groups even with adjustment for ACE inhibitor and ARB use. The odds of developing an elevated ACR was 59\% higher for a participant who developed diabetes compared with one who did not.

Discussion: At entry into the DPP, an elevated ACR was present in 6.2\%. Despite the marked decrease in progression to diabetes and the improvement in insulin resistance and other cardiovascular risk markers in the ILS and metformin groups, there was no improvement in ACR, on average, in those two groups. However, the frequency of an elevated ACR was higher in participants who developed diabetes. An increased ACR may have multiple causes, thus obscuring the improvements that might have been expected with the reduction in insulin resistance seen in the DPP.

Trial registration: DPP is registered in www.clinicaltrials.gov
Increased urinary albumin excretion rates (AER) have been linked to the development of diabetic nephropathy and macrovascular disease in patients with type 1 and type 2 diabetes (1, 2). The development of increased AER is associated not only with hyperglycemia but also with blood pressure elevations (3-6). Because of difficulties in precisely timing the onset of type 2 diabetes, the duration and degree of glucose intolerance necessary for the development of elevations of AER have been addressed in large, cross-sectional and longitudinal studies. In cross-sectional studies of Pima Indians, microalbuminuria was found in 8% of those with normal glucose tolerance, 15% of those with impaired glucose tolerance (IGT) and 47% of those with type 2 diabetes (7). These studies have also found that microalbuminuria was correlated with insulin resistance (8), rising glucose levels (9,10) and the presence of the metabolic syndrome (11).

The Diabetes Prevention Program (DPP) was a randomized, prospective, clinical trial that tested strategies to prevent or delay the development of type 2 diabetes in overweight or obese participants aged 25 years and older with elevated fasting glucose and IGT (12, 13). We have previously reported that 28% of the 3819 participants initially entered into the study had hypertension, that the mean urine albumin was 14 mg/g of creatinine, and that the ACR had a weak (r=0.09) but statistically significant correlation with systolic blood pressure (SBP) at baseline (14). Both lifestyle modification and metformin treatment resulted in significant decreases in the development of diabetes during the DPP (13). We now analyze the development of elevations of AER as a function of time and treatment group during the DPP.

METHODS

Participants and procedures: Full details of the protocol, recruitment and outcomes have been published (5;6). The current report includes 3188 of the 3234 participants entering the study who had urine ACR measurements prior to randomization. This number does not include participants from the troglitazone arm, which was discontinued.

Inclusion and exclusion criteria have been published previously (12, 13). Pertinent to the current analysis, the following exclusions should be noted: serum creatinine ≥1.4 mg/dL (124 µmol/L) for men or ≥1.3 mg/dL (115 µmol/L) for women; urine protein ≥2+ on one occasion (dipstick) in the absence of infection or vaginal contamination; and in individuals who were or would become 80 years of age during the study, a direct measure of creatinine clearance, based on a 24 hour urine collection, < 75 mL/min.

Standardized interviewer-administered questionnaires were used to obtain self-reported data on personal medical history, medications, diet, etc. Overall, adiposity was assessed by Body Mass Index (BMI). All anthropometric measures reflected the average of two measurements. Blood pressure was measured with a standard mercury manometer with the participant seated in a chair for five minutes prior to the first of two measures separated by 30 seconds. The mean of the two readings were used in the analyses. Hypertension is defined as meeting any of 3 criteria: systolic blood pressure ≥ 140 mmHg, diastolic blood pressure ≥ 90 mmHg or on medications that lower blood pressure. Further details have been published elsewhere (5;6/12, 13).

Laboratory Methods: All the analytical measurements were performed at the Central Biochemistry Laboratory (Northwest Lipid Research Laboratories, University of Washington, Seattle, WA) as previously described (12,13). Pertinent to the
current analyses, creatinine concentrations in the serum and urine were measured by a variation of the Jaffe method and urine albumin concentration was measured by a fluoroimmunoassay. Albuminuria was assessed using spot urine test of albumin and creatinine. The albumin to creatinine ratio (ACR) was used to define categories of albuminuria: normal (<30 mg/g creatinine), microalbuminuria (30-<300 mg/g creatinine), and macroalbuminuria (≥300 mg/g creatinine). In this report, the term elevated ACR indicates the combined categories of microalbuminuria and macroalbuminuria.

Statistical Analyses: For this analysis, participants were followed for an average of 3.4 years with the end of study assessment ranging from 2.4 to 5.4 years, a period four months longer than that reported previously (13) to maximize the available data that were collected during the masked phase of the DPP.

Nominal (unadjusted) P values and confidence intervals are reported. Logistic regression was used to compare the prevalence of elevated ACR at baseline and end of study. Wilcoxon signed rank test was used to assess whether the paired ACR levels changed between baseline and the end of study (EOS) within groups while the Kruskal-Wallis test is used to compare the ACR levels at EOS among the three treatment groups.

RESULTS

Baseline assessments (n=3188): The baseline prevalence of elevated albuminuria by baseline characteristics and treatment group are displayed in Figure 1. Elevated ACR levels were present in 198 participants (6.2%), with similar percentages in the three groups: placebo 5.3%, metformin 6.5%, and ILS 6.8%. Only 14 participants in the entire study had an ACR ≥ 300 mg/g creatinine at baseline. Angiotensin converting enzyme (ACE) inhibitors or angiotensin II receptor blockers (ARBs) were used at baseline in 8.2%, 9.9% and 8.6% of the participants in the Placebo, Metformin and ILS groups, respectively. At baseline there were no treatment group differences, including systolic and diastolic BP, the presence of hypertension, mean urine albumin/creatinine ratios (ACR), or serum creatinine.

When the baseline ACR measurements were broken down by quartiles (≤ 3.7, >3.7-5.5, >5.5-9.7, >9.7 mg/g), those with higher ACR levels had higher BMI’s, greater waist circumferences, higher fasting insulin level, higher SBP and DBP levels and greater frequencies of hypertension (Table 1).

Paired Baseline and End of Study Assessments (n=2802): Of the participants with baseline evaluations, 2802 had measurements performed at the end of the study. In these 2802 participants the total number with elevated ACR levels did not change significantly, going from 174 (6.2%) to 171 (6.1%) participants, after a mean of 3.4 years in the study. These numbers comprise both a regression to normal from prior elevated levels plus incident cases (Table 2). The net change in persons moving from normal to elevated ACR (numbers worsening minus numbers regressing) were 9 (placebo), 0 (metformin) and -12 (ILS). Overall, there were more improvements in the ILS group and more who worsened in the placebo group, although this difference was not statistically significant (p=0.07, Table 2). Despite the significant decrease in the incidence of diabetes among the ILS and metformin groups compared to placebo, there were only minimal, and not statistically significant differences in the frequency of elevated ACR levels between the groups: placebo 6.3%, metformin 6.7%, and ILS 5.4% at the end of the study (Figure 3). The median ACR levels in all three groups did not change significantly and the changes did not differ significantly between the treatment groups.
Albuminuria in the DPP

placebo 0.10 mg/g creatinine, Metformin 0.12 mg/g creatinine, and ILS 0.06 mg/g creatinine. Although at the end of the study the frequency of SBP ≥140 mmHg was lower in the ILS group (10.1%) than in the other two groups (placebo 12.2%, Metformin 12.6%), this difference was not significantly different. The differences in frequencies of DBP ≥ 90 mmHg at the end of the study approached significance (p=0.056) among the three groups: ILS 5.7%, metformin 8.5%, placebo 6.7%.

The frequency of ACE inhibitor or ARB use increased in all three groups, from 8.3 to 23% in the placebo group, from 9.6 to 23.3% in the Metformin group and from 8.7% to 17.9% in the ILS group. The increase in the ILS group was significantly less than in the other two groups (p=0.023), possibly because of the slightly lower frequency of hypertension at the end of the study in this group. We performed detailed analyses to determine incident new cases of elevated ACR levels vs. regression to normal, with and without use of ACE inhibitors or ARBs, because the use of these drugs at baseline might have prevented the detection of a possible elevated level and the institution of therapy with these drugs might either cause regression to normal of preexisting elevated levels or prevented the development of abnormal levels. For example, of the 931 ILS participants who had a baseline and end-of-study assessment for ACR, 62 (6.7%) had elevated levels at baseline. However, there were an additional 71 (7.6%) participants who were on ACE inhibitors or ARBs. Thus, the prevalence of elevated ACR at baseline, when unmasked by concurrent use of ACE inhibitors or ARBs, could have been between 6.7% and 14.3%. Among the 869 ILS participants who did not have elevated ACR levels at baseline, 28 (3.2%) had elevated ACR levels at the end of study examination and an additional 70 (7.5%) participants initiated ACE inhibitors or ARBs after baseline, so the incidence of an increased ACR ranged from 3.0 to 10.5%. Conversely, 40 of the 62 participants (64.5%) with elevated ACR levels at baseline no longer had elevated levels at the end of study; however 18 of these 40 were on ACE inhibitors or ARBs so the resolution of an elevated ACR level ranges from 35.5% to 64.5%. When the overall prevalence -- new incidence cases and reversal of elevated ACR levels -- for the three groups was analyzed in this way, the estimates of elevated ACR levels at the end of the study were not significantly different between the three treatment groups, even adjusted for ACE inhibitor and ARB use. In addition, the treatment assignments had no significant effect on log AER at the end of the study whether or not adjustments were made for the baseline covariates: log-transformed ACR, systolic and diastolic blood pressures, use of ACEi/ARB, age, sex, and rece/ethnicity.

The odds of developing an elevated ACR level was 59% higher for a participant who developed diabetes compared with one that did not and there was no difference among the three treatment groups in this regard (Figure 2). Participants in the placebo group who developed diabetes experienced a significantly greater change in ACR compared with those without diabetes (p = 0.036; median = 0.02 vs 0.34 mg/g creatinine, Figure 3), although these changes were so small as to be of little clinical importance. The presence of hypertension also increased the median ACR in diabetic and nondiabetic participants in each treatment group (Figure 3).

DISCUSSION

In participants entering the DPP, the frequency of an elevated ACR level was 5.8%, a proportion considerably lower than that found in other comparable populations.
In the Third National Health and Nutrition Examination Survey (NHANES III: 1988-1994), microalbuminuria was present overall in 7.8% of women and 5.0% of men but in those with the metabolic syndrome, microalbuminuria was found in 12% of men and 13% of women (11). As mentioned previously, 15% of Pima Indians with IGT have microalbuminuria (7). In other studies in subjects with IGT, 9.9% of Australians (15), 14% (16) and 24% (17) of Japanese, 11.8% of Koreans (18) and 19% of Indians had microalbuminuria (19).

The reasons that our participants had such low rates of elevated ACR levels are not clear. Blood pressure was particularly well-controlled (mean SBP 123.7 ± 14.7 and mean DBP 78.3 ± 9.3 mmHg). These blood pressures are substantially lower than those found in the patients with microalbuminuria in the AusDiab Study (151 ± 23/ 78 ± 13 mmHg) (15). Furthermore, entry exclusion criteria (creatinine > 1.4 mg/dl in men, > 1.3 mg/dl in women, creatinine clearance < 75 ml/min in subjects older than 80, and > 2+ proteinuria on dipstick) may have removed many with or at high risk for developing elevated ACR. Another issue is the use of ACE inhibitors or ARBs, which may lower urinary albumin excretion; these drugs were used in 6.7%, 8.3% and 6.1% in the ILS, Metformin and Placebo groups, respectively. As these drugs were often used for hypertension treatment without knowing baseline albuminuria status, the frequency of elevated ACR levels could have been as high as 13.0, 14.4% and 11.1% in the ILS, Metformin and Placebo groups, respectively, making these percentages more in line with the frequencies found in other studies.

Elevated ACR correlated with insulin resistance in the DPP and this has also been shown in other studies of people with normal and impaired glucose tolerance (8). Therefore, it would have been expected that the interventions with ILS and metformin, which decreased the development of diabetes and decreased the degree of insulin resistance, (23, 24) would similarly decrease albumin excretion and the frequency of microalbuminuria. Furthermore, metformin has previously been shown to decrease urinary albumin excretion in patients with type 2 diabetes (20). However, this was not the case in the DPP cohorts. One possible reason is that although this is the largest study to have addressed this issue, we still did not have enough power to detect such changes, as there were relatively small numbers who had microalbuminuria at baseline and there was only a short time to detect incident cases of microalbuminuria.

The presence of micro- and macroalbuminuria in patients with IGT and diabetes has been thought to be a marker of increased cardiovascular risk (2, 21, 22). However, despite the improvement in insulin resistance and other cardiovascular risk markers in the ILS and metformin groups (23, 24), there was no improvement in ACR in those two groups.

Obesity has been associated with glomerular hypertrophy, increased urinary albumin excretion, and even decreased GFR in the absence of diabetes in some patients (25). It may well be that the increased ACR found in the DPP participants has multiple causes, including insulin resistance, endothelial dysfunction, early diabetic nephropathy related to hyperglycemia, hypertensive nephropathy, and focal sclerosis related to obesity. We did not adjust for antihypertensive drug use other than ACE inhibitors and ARBs, and this may also be a shortcoming. Thus, the modest changes in insulin resistance and weight loss that occurred with active intervention in the DPP over the relatively short period of time of 3.4 years may be only one set of factors that need
to be corrected to affect the kidney disease in
this patient population.

ACKNOWLEDGMENTS:

DPP Research Group Authorship List
(Available in the online appendix at

Funding was provided by the National
Institutes of Health through the National
Institute of Diabetes and Digestive and
Kidney Diseases, the National Center on
Minority Health and Health Disparities, the
National Institute of Child Health and Human
Development, the Office of Women’s Health,
and the National Institute on Aging. In
addition, the Indian Health Service, the
Centers for Disease Control and Prevention,
the American Diabetes Association, and two
pharmaceutical companies, Bristol-Myers
Squibb and Parke-Davis contributed support.
The General Clinical Research Center
Program, National Center for Research
Resources, supported many of the clinical
centers. Support to the clinical centers and
the Coordinating Center was provided by the
National Institute of Diabetes and Digestive
and Kidney Diseases through a Cooperative
Agreement, except for the Southwestern
American Indian Centers, which were
supported directly by the National Institute
of Diabetes and Digestive and Kidney Diseases
and the Indian Health Service. This research
was also supported, in part, by the Intramural
Research Program of the National Institute
of Diabetes and Digestive and Kidney Diseases.

Financial information: The Diabetes
Prevention Program was principally
supported by the National Institute of
Diabetes and Digestive and Kidney Diseases
and other components of the National
Institutes of Health and the Centers for
Disease Control and Prevention.

Grant Support: By the National
Institutes of Health (5U01DK048489).
REFERENCES

Table 1. Baseline characteristics by albumin/creatinine ratio (mg/g) quartiles

<table>
<thead>
<tr>
<th>ACR quartiles</th>
<th>Overall</th>
<th><3.7</th>
<th>3.7-5.5</th>
<th>5.5-9.7</th>
<th>>9.7</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number</td>
<td>3188</td>
<td>772</td>
<td>818</td>
<td>798</td>
<td>800</td>
<td><.001</td>
</tr>
<tr>
<td>% Female</td>
<td>2158 (68%)</td>
<td>453 (59%)</td>
<td>536 (66%)</td>
<td>595 (75%)</td>
<td>574 (72%)</td>
<td><.001</td>
</tr>
<tr>
<td>Age (y)</td>
<td>50.6 ± 10.7</td>
<td>50.0 ± 10.6</td>
<td>50.3 ± 10.4</td>
<td>50.6 ± 10.5</td>
<td>51.6 ± 11.1</td>
<td>0.02</td>
</tr>
<tr>
<td>BMI (kg/m2)</td>
<td>32.5 ± 8.5</td>
<td>31.8 ± 7.2</td>
<td>32.4 ± 7.1</td>
<td>32.3 ± 7.1</td>
<td>33.5 ± 7.2</td>
<td><.001</td>
</tr>
<tr>
<td>Waist (cm)</td>
<td>103 ± 19</td>
<td>102 ± 16</td>
<td>103 ± 16</td>
<td>103 ± 16</td>
<td>106 ± 16</td>
<td><.001</td>
</tr>
<tr>
<td>Fasting glucose (mg/dl)</td>
<td>106 ± 11</td>
<td>106 ± 9</td>
<td>106 ± 9</td>
<td>107 ± 9</td>
<td>107 ± 9</td>
<td>0.12</td>
</tr>
<tr>
<td>120 min glucose (mg/dl)</td>
<td>165 ± 24</td>
<td>165 ± 20</td>
<td>164 ± 20</td>
<td>164 ± 20</td>
<td>166 ± 20</td>
<td>0.10</td>
</tr>
<tr>
<td>HbA1c (%)</td>
<td>5.98 ± 0.65</td>
<td>5.94 ± 0.55</td>
<td>5.99 ± 0.54</td>
<td>6.00 ± 0.54</td>
<td>6.00 ± 0.54</td>
<td>0.04</td>
</tr>
<tr>
<td>Fasting insulin (uU/ml)</td>
<td>23.7 ± 2.1</td>
<td>22.1 ± 1.8</td>
<td>23.6 ± 1.8</td>
<td>23.8 ± 1.8</td>
<td>25.6 ± 1.8</td>
<td><.001</td>
</tr>
<tr>
<td>Systolic (mmHg)</td>
<td>124 ± 19</td>
<td>120 ± 16</td>
<td>122 ± 16</td>
<td>124 ± 16</td>
<td>128 ± 16</td>
<td><.001</td>
</tr>
<tr>
<td>Diastolic (mmHg)</td>
<td>79 ± 13</td>
<td>77 ± 11</td>
<td>78 ± 10</td>
<td>79 ± 10</td>
<td>81 ± 10</td>
<td><.001</td>
</tr>
</tbody>
</table>

Data are in number (%) for categories and mean ± SD for continuous variables except for fasting insulin represented as geometric mean. All variables except female and age are adjusted for baseline age, sex and race / ethnicity. (Abbreviations: ACR – albumin creatinine ratio; BMI – body mass index; HbA1c = hemoglobin A1c.

Table 2. Change in classification between normal and elevated ACR* from baseline to end of study by treatment group

<table>
<thead>
<tr>
<th>Baseline</th>
<th>End of study status</th>
<th>PLAC</th>
<th>MET</th>
<th>ILS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal ACR</td>
<td>Developed elevated ACR</td>
<td>33 (4%)</td>
<td>35 (4%)</td>
<td>28 (3.3%)</td>
</tr>
<tr>
<td></td>
<td>Remained without elevated ACR</td>
<td>857 (96%)</td>
<td>834 (96%)</td>
<td>841 (95%)</td>
</tr>
<tr>
<td>Total</td>
<td>50 (5%)</td>
<td>62 (7%)</td>
<td>62 (7%)</td>
<td></td>
</tr>
<tr>
<td>Elevated ACR</td>
<td>Resolved elevated ACR</td>
<td>24 (48.0%)</td>
<td>35 (56%)</td>
<td>40 (64%)</td>
</tr>
<tr>
<td></td>
<td>Remained with elevated ACR</td>
<td>26 (52%)</td>
<td>27 (44%)</td>
<td>22 (35%)</td>
</tr>
<tr>
<td>Total</td>
<td>940</td>
<td>931</td>
<td>931</td>
<td></td>
</tr>
</tbody>
</table>

Stable status	Worsened albuminuria	33 (3.5%)	35 (3.8%)	28 (3.0%)
Improved albuminuria	24 (2.6%)	35 (3.8%)	40 (4.3%)	
Net increase in elevated ACR	9 (1.0%)	0 (0.0%)	-12 (-1.3%)	

* Elevated ACR is defined as ACR ≥ 30 mg/g.
† p (trend) = 0.07 for test of linear trend between treatment group (PLAC to MET to ILS) and change in category (worsened to stable to improved).
FIGURE LEGENDS

Figure 1. Prevalence of elevated ACR levels at baseline by subgroups (see EPS file). The height of the bars represent the percent with elevated albumin creatinine ratio (ACR ≥ 30 mg/g, the solid section represents the microalbuminuria (ACR between 30 and <300) while the white section represent the macroalbuminuria (ACR ≥ 300). The prevalence of albuminuria differed among subgroups for age, race/ethnicity, systolic BP, diastolic BP and BMI (p<0.05).

Figure 2. Prevalence of elevated ACR (≥ 30 mg/g) at end of study by treatment group and diabetes status

Figure 3. Median ACR (mg/g) by diabetes and hypertension status at end of study
Figure 1. Prevalence of microalbuminuria at baseline by subgroups*

* The prevalence of microalbuminuria differed among subgroups for age, race/ethnicity, systolic BP, diastolic BP and BMI (p<0.05).
Figure 2. Prevalence of elevated ACR at end of study by treatment group and diabetes status*
Figure 3. Median ACR levels by diabetes and hypertension status at end of study