Increased Persistency in Medication Use by US Medicare Beneficiaries with Diabetes is Associated with Lower Hospitalization Rates and Cost Savings

Bruce C. Stuart, PhD,1 Linda Simoni-Wastila, PhD,1 Lirong Zhao, MS,1 Jennifer T. Lloyd, MA,1 Jalpa A. Doshi, PhD2

1University of Maryland Baltimore, Peter Lamy Center on Drug Therapy and Aging
2University of Pennsylvania, Department of General Internal Medicine.

Address for Correspondence:
Jennifer Lloyd, M.A
Email: jlloyd@rx.umaryland.edu

Additional information for this article can be found in an online appendix at http://care.diabetesjournals.org.

This is an uncopyedited electronic version of an article accepted for publication in Diabetes Care. The American Diabetes Association, publisher of Diabetes Care, is not responsible for any errors or omissions in this version of the manuscript or any version derived from it by third parties. The definitive publisher-authenticated version will be available in a future issue of Diabetes Care in print and online at http://care.diabetesjournals.org.
Objective: Assess the relationship between annual fills for antidiabetic medications, angiotensin-converting enzyme (ACE) inhibitors, angiotensin II receptor blockers (ARBs), and lipid lowering agents on hospitalization and Medicare spending for beneficiaries with diabetes.

Research design and methods: Using Medicare Current Beneficiary Survey data from 1997-2004, we identified 7,441 community dwelling beneficiaries with diabetes who contributed 14,317 person-years of data for the analysis. We used multivariate regression analysis to estimate the impact of persistency in medication fills on hospitalization risk, hospital days, and Medicare spending.

Results: For users of older oral antidiabetic agents, ACE inhibitors, ARBs, and statins, each additional prescription fill was associated with significantly lower risk of hospitalization, fewer hospital days, and lower Medicare spending.

Conclusions: These results suggest an economic case for promoting greater persistency in use of drugs with approved indications by Medicare beneficiaries with diabetes, but additional research is needed to corroborate the study’s cross-sectional findings.
Approximately 25% of Medicare beneficiaries have diabetes (1). In 2002, the average beneficiary with diabetes spent $15,292 on medical services including $2,349 for prescription medications (1). The economic burden of diabetes is huge—$27 billion in 2007 (2) rising to possibly $190 billion by 2020 (3).

Recent studies suggest that better medication management for older individuals with diabetes not only improves health (4) and reduces mortality (5), but also has the potential to reduce future medical care costs (6-7) and may be cost saving to the Medicare program (4-5, 8-10).

In this article we examine annual prescription fill rates for antidiabetic medications, ACE inhibitors, ARBs, and lipid lowering agents among Medicare beneficiaries with diabetes between 1997 and 2004. We then test to determine whether increased utilization is associated with lower hospitalization rates and savings in traditional Medicare services.

RESEARCH DESIGN AND METHODS

The study uses Medicare Current Beneficiary Survey (MCBS) data. Cases were selected based on self-reported diabetes or the presence of an ICD-9 code for diabetes and complications (250.xx), polyneuropathy in diabetes (357.2), diabetic retinopathy (362.01, 362.02), or diabetic cataract (366.41) on 1 hospital, SNF or home health claims, or any of these codes on 2 outpatient or physician claims following a validated protocol (11, 12). These selection criteria resulted in a sample of 7,441 individuals with diabetes who contributed 14,317 annual observations for the analysis.

We used MCBS prescription medication files to identify users of the following 7 drug classes: older oral antidiabetic drugs (metformin and sulfonylureas), newer oral agents (thiazolidinediones, meglitinides, and alpha-glucosidase inhibitors), insulins, ACE inhibitors, ARBs, statins, and other lipid lowering medications (ezetimibe, fibrates, niacin, others). The primary explanatory variable in our analysis is the annual number of prescription fills per class per year.

We assessed the impact of prescription fill rates for users of each drug class on the risk of hospitalization, total annual hospital days, and spending on Medicare services measured in constant 2006 dollars using the Consumer Price Index (13). Covariates included an extensive list of demographic, socioeconomic, and health status indicators (see Table A1 in the online appendix available at http://care.diabetesjournals.org).

We estimated 7 regression models—one per drug class—for each of the 3 dependent variables using the person-year as the unit of analysis and the full set of covariates listed in the online appendix. Because study subjects frequently used medications in 2 or more drug classes, we included fill rates for all 7 drug classes in each equation. This procedure assured that the parameter coefficient on prescription fills for the subset of users of a particular drug class was conditioned on utilization of the other medication classes.

We used logistic regression for the hospitalization models and poisson regression for the hospital day equations. For the Medicare spending models, we used a generalized linear equation with a gamma distribution and log link to approximate the skewed distribution of Medicare expenditures (14). All models were estimated in Stata 9 with a robust cluster command to correct standard errors for repeated measures among subjects observed in multiple years. Results are reported as conditional marginal probabilities (hospitalization) or conditional marginal effects (dy/dx) of a unit change in
prescription fills on the change in the dependent variable (hospital days and Medicare spending) with all other variables held at their mean values.

RESULTS

Almost a third (30%) of the sample was hospitalized each year with rates ranging from 27.4% for users of older antidiabetic medications to 42.9% for insulin users (Table 1). The mean number of inpatient days varied in similar fashion. Mean annual Medicare spending ranged between $8,565 (older oral antidiabetic medication users) and $16,950 (insulin users).

User rates varied widely across the 7 drug classes. Annual prevalence of older oral antidiabetic drug use was 47.1% compared to 13.3% for newer agents. Insulin use was infrequent (6.1%). The highest average annual fill rate was for older oral antidiabetic drugs (8.3), with annual fills hovering around 6 for the other classes.

The regression results are summarized in brackets in the last 3 columns in Table 1. Overall, we found a consistent inverse relationship between prescription fill rates and the 3 dependent variables for older oral antidiabetic agents, ACE inhibitors, ARBs, and statins. The marginal effects of prescription fills for these 4 classes were negative and statistically significant in every case. Each additional prescription fill by users of older oral antidiabetic agents reduced hospitalization risk by 0.3%, reduced the number of hospital days by 0.04 days, and reduced Medicare spending by $71. Each added fill for ARB users reduced hospitalization risk by 1.3%, reduced the number of hospital days by 0.12 days, and reduced Medicare spending by $159. Similar results were seen for the other 2 drug classes.

The hospital effects may appear to be small, but with an average Medicare cost of $952 per inpatient day in 2006 (20), the results translate into hospital cost offsets ranging from $38 per prescription for older oral antidiabetic agents to $114 for ARBs. For 3 of the drug classes, estimated Medicare savings exceeded the cost per drug fill measured in 2006 dollars. The average unit cost of an older oral antidiabetic agent was $49 (in constant 2006 dollars) for our study sample or $22 less than the estimated saving associated with an additional fill. For ACE inhibitors and ARBs the estimated unit costs were $58 and $71, significantly lower than the estimated Medicare savings per fill of $154 and $159, respectively.

CONCLUSION

We find consistent evidence that more persistent use of older oral antidiabetic drugs, ACE inhibitors, ARBs, and statins are associated with reduced hospitalization and lower spending for traditional Medicare services by beneficiaries with diabetes. These findings are consistent with previous research showing that underuse of these agents is associated with greater risk of hospitalization and higher medical costs for persons with diabetes (5, 8-10, 15). The study results suggest a case for promoting greater use of drugs with approved indications by Medicare beneficiaries with diabetes, but additional research is needed to corroborate the study’s cross-sectional findings.

ACKNOWLEDGEMENTS

The Commonwealth Fund sponsored this research and had no role in the design, conduct or reporting of results. Presented at the 25th Annual AcademyHealth, Washington D.C., 9 June 2008. The authors wish to acknowledge helpful comments from Amy Davidoff, PhD.

Disclosure statement: Bruce C. Stuart has received grant funding from Merck and GlaxoSmithKline, and has served as a consultant to Omnicare, Novartis, and Abbott. Linda Simoni-Wastila has received funding from GlaxoSmithKline and Bristol Myers
Squibb. Jalpa A. Doshi has received research support from Abbott Labs. She has served as advisory board member or consultant to Bristol Myers Squibb, Amgen, and Forest Laboratories.
REFERENCES
Table 1. Descriptive Statistics and Regression Results of the Relationship between Prescription Fills by Drug Class, Hospitalization, Hospital Days, and Medicare Spending for Medicare Beneficiaries with Diabetes, 1997-2004

<table>
<thead>
<tr>
<th>Drug Classes</th>
<th>Number of Drug Users (%</th>
<th>Mean (sd) Annual Prescription Fills</th>
<th>Unadjusted Hospitalization Risk (%)</th>
<th>Unadjusted Mean (sd) Inpatient Days</th>
<th>Unadjusted Mean (sd) Medicare Spending ($ 2006)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Older oral antidiabetic agents*</td>
<td>6,747 (47.1%)</td>
<td>8.3 (5.6)</td>
<td>27.4</td>
<td>2.8 (8.4)</td>
<td>8,565 (16,937)</td>
</tr>
<tr>
<td>Newer oral antidiabetic agents**</td>
<td>1,910 (13.3%)</td>
<td>5.8 (4.1)</td>
<td>30.8</td>
<td>3.5 (10.1)</td>
<td>10,436 (19,533)</td>
</tr>
<tr>
<td>Insulins</td>
<td>875 (6.1%)</td>
<td>6.0 (5.1)</td>
<td>42.9</td>
<td>6.1 (13.9)</td>
<td>16,950 (28,412)</td>
</tr>
<tr>
<td>ACE inhibitors</td>
<td>5,490 (38.4%)</td>
<td>6.5 (4.0)</td>
<td>32.3</td>
<td>3.6 (9.5)</td>
<td>11,019 (20,509)</td>
</tr>
<tr>
<td>ARBs</td>
<td>1,724 (12.0%)</td>
<td>5.9 (3.8)</td>
<td>31.3</td>
<td>-0.9 (-1.3, -0.5) †</td>
<td>11,592 (20,992)</td>
</tr>
<tr>
<td>Statins</td>
<td>4,641 (32.4%)</td>
<td>6.0 (3.8)</td>
<td>29.5</td>
<td>-1.3 (-2.0, 0.6) †</td>
<td>10,396 (19,847)</td>
</tr>
<tr>
<td>Other lipid lowering agents</td>
<td>936 (6.5%)</td>
<td>5.3 (3.8)</td>
<td>28.3</td>
<td>-0.5 (-0.9, -0.04) ‡</td>
<td>9,828 (20,012)</td>
</tr>
</tbody>
</table>

*Includes metformin and sulfonyureas
**Includes thiazolidinediones, meglitinides, and alpha-glucosidase inhibitors
***Estimate failed to converge
† p < 0.001 significant difference, § p < 0.01 significant difference, ‡ p < 0.05 significant difference.