Prediction of type 2 diabetes using alternate anthropometric measures in a multi-ethnic cohort: The Insulin Resistance Atherosclerosis Study

Meredith F. MacKay, MSc, Department of Nutritional Sciences, University of Toronto, Toronto, ON, Canada
Steven M. Haffner, MD, Division of Clinical Epidemiology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
Lynne E. Wagenknecht, PhD, Department of Public Health Sciences, Wake Forest University, Winston Salem, NC, USA
Ralph B. D’Agostino Jr, PhD, Department of Public Health Sciences, Wake Forest University, Winston Salem, NC, USA
Anthony J.G. Hanley, PhD, Department of Nutritional Sciences, University of Toronto, Toronto, ON, Canada

Corresponding Author:
Dr. Anthony JG Hanley
anthony.hanley@utoronto.ca

Additional information for this article can be found in an online appendix at http://care.diabetesjournals.org

Submitted 12 September 2008 and accepted 22 January 2009.

This is an uncopyedited electronic version of an article accepted for publication in Diabetes Care. The American Diabetes Association, publisher of Diabetes Care, is not responsible for any errors or omissions in this version of the manuscript or any version derived from it by third parties. The definitive publisher-authenticated version will be available in a future issue of Diabetes Care in print and online at http://care.diabetesjournals.org.
Objective: To compare different anthropometric measures in terms of their ability to predict T2DM and to determine whether predictive ability was modified by ethnicity.

Research Design and Methods: Anthropometry was measured at baseline on 1073 non-Hispanic Whites (nHW), African Americans (AA) and Hispanics (HA), of which 146 developed T2DM after 5.2 years. Logistic regression models were used with areas under the receiver operator characteristic curve (AROC) comparing the prediction of models.

Results: Waist-height ratio (AROC=0.678) was the most predictive measure, followed by BMI (AROC=0.674). Results were similar in nHW and HA, although in AA, central adiposity measures appeared to best predict T2DM.

Conclusion: Measures of central and overall adiposity predicted T2DM to a similar degree, except in AA where results suggested that central measures were more predictive.
Various assessment approaches have been used to characterize the relationship between obesity and type 2 diabetes (T2DM). Computed tomography and other imaging techniques allow for direct quantification of visceral and subcutaneous adipose tissue (VAT, SAT). These methods are costly and invasive, however, and thus anthropometric measurements are more commonly utilized. The majority of previous studies have assessed only BMI, waist circumference (WC) and waist-to-hip ratio (WHR), and few data are available from multi-ethnic cohorts (1-6). Our objective, therefore, was to compare a wide range of anthropometric measures in terms of their ability to predict incident T2DM in three ethnic groups.

RESEARCH DESIGN AND METHODS

The Insulin Resistance Atherosclerosis Study (IRAS) has been described previously (7). The current report comprised 1073 nondiabetic subjects aged 40-69y at baseline (1992-1994); 56% were women, while 40% were non-Hispanic White (nHW), 34% were Hispanic (HA) and 26% were African American (AA).

Glucose tolerance was established using 1999 World Health Organization criteria for a 2-hour OGTT. Height, weight, WC, hip circumference (HC) and skinfold thicknesses (triceps and subscapular) were measured following a standardized protocol (7). The sum of the skinfold thicknesses (SumSF) was used to indicate overall obesity and the ratio of subscapular-to-triceps (STratio) measures was used to determine the ratio of central to peripheral body fat, with a greater ratio indicating a larger proportion of centrally distributed adipose tissue. The RJL (RJL Systems, Clinton Township, MI) method of bioelectrical impedance (BIA) was used to determine percent body fat calculated according to the Segal formula (8). RJL BIA has been previously shown to have good reliability (interclass correlation ≥0.99) (9). Follow-up examinations occurred an average of 5.2 years later, with 146 cases of incident diabetes diagnosed by OGTT.

Logistic regression was used to evaluate the association between baseline measures of obesity and incident diabetes. All anthropometric variables were log transformed, and odds ratios were presented per one SD change. Two models were run for each measure: Model A controlled for age, gender and ethnicity, while model B controlled for the above as well as family history of diabetes and systolic BP. These variables are common in current diabetes risk scores and are easily and non-invasively obtained in clinical settings. The area under the receiver operating characteristic (AROC) curve (c-statistic) for each model was calculated and used as the primary criterion upon which to judge a model’s discriminative ability (10). Different AROCs were statistically compared using the method of DeLong (11). All analyses were performed using SAS v9.1 (SAS Institute, Inc., Cary, NC).

RESULTS

Associations between anthropometric measures and risk of diabetes for the overall cohort are presented in Table 1. Waist—height ratio (WHtR) was the most predictive of diabetes (AROC=0.678, OR=1.79 [1.49-2.15]), followed closely by BMI (AROC=0.674, OR=1.76 [1.47-2.10]). The remainder of the indices had AROCs ranging from 0.667-0.625 with no consistent patterning of central compared to overall measures in predicting diabetes. The only measures that were significantly less predictive than WHtR were SumSF and HC (p<0.05) (Table 1). The results according to AROC ranking were similar after further adjustment for family history of diabetes and...
systolic BP (see Table A available in the online appendix at http://care.diabetesjournals.org), or for fasting glucose concentration.

There were no significant interactions of gender with anthropometric measures in the prediction of diabetes. Given our a priori interest in ethnic differences in diabetes prediction by anthropometric measurements, logistic models were stratified by ethnicity.

In the nHW and HA populations, BMI was most predictive of diabetes, although there was no clear pattern in central versus overall measures in outcome prediction (Table 1). In contrast, for the AA subgroup, all measures of central adiposity ranked higher in predicting diabetes than overall obesity measures. STRatio had the greatest AROC (0.714) and OR (2.78 [1.65-4.70]), followed by WHR, WHtR and WC. HC, BIA %fat and SumSF were significantly less predictive than STRatio in model A for this ethnic group (model A). Results of analyses in model B were generally similar for each ethnic subgroup (see Table A in the online appendix).

CONCLUSIONS

Our main finding was that measures of central adiposity were, in general, not superior to measures of overall obesity in predicting diabetes. In the full cohort, as well as in the nHW and HA subgroups, there was no clear distinction between measures of central versus overall obesity in prediction of diabetes. In contrast, among AA the results suggested a greater diabetes predictive ability for measures of central adiposity, although there was limited statistical power within this subgroup. Previous studies which have directly measured body fat distribution have shown that AA have less VAT at similar levels of obesity compared to nHW (12). Thus, it is possible that accumulation of greater amounts of VAT has a more detrimental effect on risk of diabetes in AA compared to populations that have higher average levels of VAT.

This is the first paper to examine the predictive ability of a wide range of anthropometric measurements on incident diabetes in three ethnic groups. In previous studies of single or pooled ethnic groups, findings have been inconsistent (1-6), and a recent meta-analysis of 32 studies showed that there was no significant difference between the relative risks of BMI, WC and WHR for incident diabetes (13).

There are two possible explanations for the non-superiority of central versus overall adiposity measures in the prediction of diabetes. First, both VAT and SAT are associated with inflammatory biomarkers and disease risk (14). Second, anthropometric measurements contain misclassification error in characterizing body fat depots. While WC has been shown to be the simple anthropometric measure that best correlates to VAT, WC actually captures both VAT and abdominal SAT, and it has been reported that WC is more highly correlated to SAT than to VAT (15).

Limitations of the present study include a modest sample size for subgroup analysis, a relatively short follow-up period and skinfold thickness measures from two rather than four sites.

In conclusion, we found no strong evidence that anthropometric measures of central adiposity were more predictive of diabetes than measures of overall obesity in the nHW and HA populations. However, our data suggest that central obesity measures may be useful in predicting diabetes among AA, although additional studies in this population are needed.

ACKNOWLEDGEMENTS

This study was supported by National Heart, Lung and Blood Institute contracts U01-HL47887, U01-HL47889, U01-HL47892, U01-HL47902, DK-29867, and
R01 58329 and grant M01-RR-43 from NCRR/NIH. Anthony Hanley is supported by the Canada Research Chairs Program and the Canadian Diabetes Association.
REFERENCES
Table 1. Association of baseline anthropometric measures with the 5-year incidence of type 2 diabetes mellitus: the Insulin Resistance Atherosclerosis Study, 1992-1994

<table>
<thead>
<tr>
<th>Measure</th>
<th>Full Cohort (n=1073)</th>
<th>Non-Hispanic White (n=430)</th>
<th>African American (n=282)</th>
<th>Hispanic (n=361)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>OR (95% CI)</td>
<td>AROC</td>
<td>OR (95% CI)</td>
<td>AROC</td>
</tr>
<tr>
<td>WHtR</td>
<td>1.79 (1.49 – 2.15)</td>
<td>0.678</td>
<td>BMI 2.22 (1.63 – 3.02)</td>
<td>0.734</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>STratio 2.78(1.65 – 4.70)</td>
<td>0.714</td>
</tr>
<tr>
<td>BMI</td>
<td>1.76 (1.47 – 2.10)</td>
<td>0.674</td>
<td>WHtR 2.25 (1.63 – 3.10)</td>
<td>0.730</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>WHR 2.52(1.57 – 4.05)</td>
<td>0.691</td>
</tr>
<tr>
<td>WC</td>
<td>1.75 (1.45 – 2.12)</td>
<td>0.667</td>
<td>STratio 2.34 (1.51 – 3.62)</td>
<td>0.729</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>WHtR 1.62(1.16 – 2.26)</td>
<td>0.645</td>
</tr>
<tr>
<td>%BF</td>
<td>2.33 (1.74 – 3.12)</td>
<td>0.662</td>
<td>%BF 3.43 (2.06 – 5.71)</td>
<td>0.728</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>WC 1.51(1.08 – 2.11)</td>
<td>0.630</td>
</tr>
<tr>
<td>ST ratio</td>
<td>1.85 (1.44 – 2.37)</td>
<td>0.659</td>
<td>WC 2.25 (1.59 – 3.17)</td>
<td>0.716</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>BMI 1.46(1.04 – 2.03)</td>
<td>0.616</td>
</tr>
<tr>
<td>WHR</td>
<td>1.93 (1.49 – 2.50)</td>
<td>0.641</td>
<td>HC 1.75 (1.31 – 2.23)</td>
<td>0.694*</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>%BF 1.49(0.88 – 2.54)</td>
<td>0.597*</td>
</tr>
<tr>
<td>SumSF</td>
<td>1.65 (1.33 – 2.04)</td>
<td>0.630*</td>
<td>WHR 2.19 (1.39 – 3.45)</td>
<td>0.670</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SumSF 1.28(0.85 – 1.93)</td>
<td>0.585*</td>
</tr>
<tr>
<td>HC</td>
<td>1.42 (1.20 – 1.69)</td>
<td>0.625*</td>
<td>SumSF 2.01(1.40 – 2.90)</td>
<td>0.669*</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>HC 1.05(0.74 – 1.49)</td>
<td>0.567*</td>
</tr>
</tbody>
</table>

Model A - Adjusted for age, gender and ethnicity. Odds Ratios (ORs) are estimated by logistic regression and refer to one standard deviation (SD) change in the natural log of the variable. Each row is an individual model with adjustments as indicated. *AROC p < 0.05 compared to table’s most predictive model.

Abbreviations: WHtR, waist-to-height ratio; BMI, body mass index; WC, waist circumference; %BF, percent fat from bioelectrical impedance; ST ratio, subscapular-to-triceps ratio; WHR, waist-to-hip ratio; Sum SF, sum of skinfold thickness measures; HC, hip circumference.