Acute Effects Of Decaffeinated Coffee And The Major Coffee Components Chlorogenic Acid And Trigonelline On Glucose Tolerance

Aimée E van Dijk MSc ¹, Margreet R Olthof PhD ¹, Joke C Meeuse MSc ¹, Elin Seebus MD ², Rob J Heine MD, PhD ², Rob M van Dam PhD ³

1. Institute for Health Sciences, VU University Amsterdam, the Netherlands
2. Department of Endocrinology, VU University Medical Center, Amsterdam, the Netherlands
3. Department of Nutrition, Harvard School of Public Health; Channing Laboratory, Brigham and Women’s Hospital, and Harvard Medical School, Boston, MA

Correspondence:
M. R. Olthof, PhD
Email: margreet.olthof@falw.vu.nl

Clinical Trial Registry No. NTR1051; Dutch Trial Register (www.trialregister.nl)

Submitted 9 February 2009 and accepted 12 March 2009.

This is an uncopyedited electronic version of an article accepted for publication in Diabetes Care. The American Diabetes Association, publisher of Diabetes Care, is not responsible for any errors or omissions in this version of the manuscript or any version derived from it by third parties. The definitive publisher-authenticated version will be available in a future issue of Diabetes Care in print and online at http://care.diabetesjournals.org.
Objective: Coffee consumption has been associated with a lower risk of type 2 diabetes. We evaluated the acute effects of decaffeinated coffee and the major coffee components chlorogenic acid and trigonelline on glucose tolerance.

Research Design and Methods: Randomized cross-over trial of the effects of 12 g decaffeinated coffee, 1 g chlorogenic acid, 500 mg trigonelline, and placebo (1 g mannitol) on glucose and insulin concentrations during a 2-hour oral glucose tolerance test (OGTT) in fifteen overweight men.

Results: Chlorogenic acid and trigonelline ingestion significantly reduced glucose (-0.7 mmol/L p=0.007 and -0.5 mmol/L p=0.024 respectively) and insulin (-73 pmol/L p=0.038 and -117 pmol/L p=0.007 respectively) concentrations 15 minutes following an OGTT as compared with placebo. None of the treatments affected insulin and glucose area under the curve values during the OGTT as compared with placebo.

Conclusions: Chlorogenic acid and trigonelline reduced early glucose and insulin responses during an OGTT.

The research was financially supported by the Dutch Diabetes Research Foundation. This study is registered at the Dutch Trial Register (www.trialregister.nl) under identifier NTR1051.
In prospective cohort studies, higher coffee consumption has been associated with a lower risk of type 2 diabetes (1,2). Associations have been similar for caffeinated and decaffeinated coffee (1,3-5) suggesting that coffee components other than caffeine have beneficial effects on glucose homeostasis. Coffee is a major source of the phenolic compound chlorogenic acid (6) and the vitamin B3 precursor trigonelline (7) that have been shown to reduce blood glucose concentrations in animal studies (5-8). This is the first study to investigate the acute effects of chlorogenic acid and trigonelline on glucose tolerance in humans.

RESEARCH DESIGN AND METHODS
Fifteen male, healthy, non-smoking, overweight (body mass index 25.0-35.0 kg/m²) coffee consumers were enrolled. All subjects provided written informed consent.

Subjects were randomly assigned to a unique treatment order through computer generated randomization by the pharmacy. Four supplements were tested in this cross-over trial: 12 grams of decaffeinated coffee (Nescafé Gold, Nestlé, The Netherlands); 1 g chlorogenic acid (Sigma Aldrich, Switzerland); 500 mg trigonelline (Sigma Aldrich) and 1 g mannitol as placebo (Spruyt Hillen Bufa, The Netherlands). Based on measurements (9,10) of decaffeinated coffee used in our study the decaffeinated coffee intervention provided 264 mg chlorogenic acid and 72 mg trigonelline. All supplements were dissolved in 270 ml water and treatments except for decaffeinated coffee were double blind. Starting 1 week before the trial participants were requested to restrict their coffee consumption to maximally 1 cup per day and on the days before each study visit no coffee was allowed.

The study consisted of four visits separated by at least six days. During each visit participants ingested one of the supplements 30 minutes before a 75 g oral glucose tolerance test (OGTT). Seven venous blood samples were taken via a cannula in the antecubital vein on each visit following an overnight fast. The first blood sample was taken 30 minutes before the start of the OGGT, immediately followed by ingestion of the supplement. The second blood sample was taken just before the OGGT and the other samples were taken 15, 30, 60, 90, and 120 minutes after the start of the OGGT.

Laboratory analyses were conducted at the VU University Medical Center. Plasma glucose concentrations were measured using the glucose hexokinase method with an inter-assay coefficient of variation (CV) of 1.3% (Roche diagnostics, Mannheim, Germany). Serum insulin concentrations were measured using an immunoradiometric assay (Bayer diagnostics, Mijdrecht, the Netherlands); The intra-assay CV was 4% and the inter-assay CV% was 8%.

The area under the curve (AUC) values for glucose and insulin were calculated using the trapezoidal method. Main treatment effects were analyzed using linear mixed regression models. Comparisons of mean glucose and insulin concentrations for individual time points were conducted using paired t-tests. All tests were two-sided and P values <0.05 were considered statistically significant. Analyses were conducted using SPSS 15.0 (SPSS Inc.).

RESULTS
The participants had a mean age (±SD) of 39.9 (±16.5) years and a mean BMI of 27.6 (±2.2) kg/m². There were no drop-outs during the trial and no adverse events were reported.

Glucose concentrations tended to be lower after chlorogenic acid as compared with placebo (Table 1), but this difference was only statistically significant 15 minutes after the start of the OGTT (difference 0.69 mmol/L; 95% CI 0.22 to 1.17; p=0.007). In addition, the mean insulin concentration was 6.6 pmol/L (95% CI 0.11 to 13.0; p=0.047) lower at the start of the OGTT and 73.3 pmol/L (95% CI 4.7 to 142.0; p=0.038) lower at 15 minutes for chlorogenic acid as compared with placebo.

Trigonelline also resulted in a significantly lower glucose (-0.51 mmol/L; 95% CI -0.95 to -0.08; p=0.024) and insulin (-117.0 pmol/L; 95% CI -196.5 to -37.4; p=0.007) concentrations at 15 minutes after the start of the OGTT as compared with placebo. Decaffeinated coffee did not significantly change mean glucose or insulin concentrations at any of the time points following the OGTT, although the insulin concentration tended to be lower at 15 minutes. None of the treatments significantly changed the insulin or glucose area under the curve values (Table 1).

CONCLUSIONS

In this randomized cross-over trial in healthy men, chlorogenic acid and trigonelline ingestion led to significantly lower glucose and insulin concentrations 15 minutes after an oral glucose load, but did not significantly reduce the OGTT insulin and glucose areas under the curve as compared with placebo.

Battram et al. found a significantly lower OGTT glucose area under the curve after decaffeinated coffee as compared with placebo (11), but no significant effect was found in the current study and two smaller previous studies (8,12, 13). Further research is needed to elucidate whether these differences in study results are due to chance or differences in study methods. Trigonelline (5) and chlorogenic acid (6-8) have been shown to reduce blood glucose concentrations in rats, but data in humans are sparse. In a study of 10 diabetic patients, intake of 500 mg of trigonelline had mixed and non-significant effects on glucose concentrations (9).

Several mechanisms have been suggested for effects of chlorogenic acid on glucose metabolism. In vitro, chlorogenic acid has been shown to inhibit alpha-glucosidase and glucose-6-phosphatase suggesting that it may delay intestinal glucose uptake (10-12). This effect could also reduce postprandial hyperglycemia through improved glucose-induced insulin secretion as a result of increased glucagon-like peptide 1 secretion (8,11). Inhibition of glucose-6-phosphatase could also reduce hepatic glucose output (15) which may have contributed to the reduction of fasting insulin concentrations that we found for chlorogenic acid.

In our study, the multiple tests conducted for different time points increased the likelihood of chance findings and confirmation of our results is therefore needed. In addition, the decaffeinated coffee supplement contained substantially less chlorogenic acid and trigonelline than the doses administered in isolation, complicating the comparison of the treatment effects.

In conclusion, chlorogenic acid and trigonelline reduced early glucose and insulin responses during the oral glucose tolerance test. This finding is consistent with the hypothesis that these
compounds may contribute to the putative beneficial effect of coffee on development of type 2 diabetes.

ACKNOWLEDGMENTS

We would like to thank the participants of the Coffee Study for their participation; and the Clinical Research Unit Internal Medicine of the VU University Medical Centre for use of the facilities. We are very grateful to Peter C. Hollman and Dini Venema (RIKILT - Institute of Food Safety, the Netherlands) for the careful measurement of chlorogenic acid and Sandy Slow (Centerbury Health Laboratories, New Zealand) for the careful measurement of trigonelline in the coffee supplement. This study was supported by the Dutch Diabetes Research Foundation (Stichting Diabetes Fonds Nederland, grant no. 2006.11.020).

Disclosure: The authors, A.E. van Dijk, M.R. Olthof, J.C. Meeuse, E. Seebus, R.J. Heine and R.M. van Dam have no relevant conflict of interest to disclose. R.J. Heine is currently employed at Eli Lilly and Company, Indianapolis, IN. During the study, R.J. Heine was still employed at the Department of Endocrinology, VU University Medical Center, Amsterdam, The Netherlands.
REFERENCES

TABLE 1 Glucose and insulin concentrations during an oral glucose tolerance test following ingestion of chlorogenic acid, decaffeinated coffee, trigonelline and placebo in 15 healthy overweight men.

<table>
<thead>
<tr>
<th></th>
<th>T -30</th>
<th>T 0</th>
<th>T 15</th>
<th>T 30</th>
<th>T 60</th>
<th>T 90</th>
<th>T 120</th>
<th>AUC</th>
</tr>
</thead>
<tbody>
<tr>
<td>GLUCOSE (MMOL/L)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Placebo</td>
<td>5.7 ± 0.2</td>
<td>5.6 ± 0.2</td>
<td>7.7 ± 0.3</td>
<td>8.8 ± 0.5</td>
<td>8.7 ± 0.7</td>
<td>8.1 ± 0.7</td>
<td>6.8 ± 0.6</td>
<td>962 ± 134</td>
</tr>
<tr>
<td>Chlorogenic acid</td>
<td>5.5 ± 0.1</td>
<td>5.5 ± 0.1</td>
<td>7.0 ± 0.2 *</td>
<td>8.6 ± 0.3</td>
<td>8.2 ± 0.6</td>
<td>7.4 ± 0.7</td>
<td>6.9 ± 0.6</td>
<td>912 ± 134</td>
</tr>
<tr>
<td>Decaffeinated coffee</td>
<td>5.6 ± 0.2</td>
<td>5.6 ± 0.1</td>
<td>7.6 ± 0.2</td>
<td>9.2 ± 0.3</td>
<td>8.9 ± 0.7</td>
<td>7.7 ± 0.7</td>
<td>6.6 ± 0.7</td>
<td>958 ± 134</td>
</tr>
<tr>
<td>Trigonelline</td>
<td>5.6 ± 0.1</td>
<td>5.5 ± 0.1</td>
<td>7.2 ± 0.2 *</td>
<td>9.0 ± 0.3</td>
<td>8.7 ± 0.5</td>
<td>7.9 ± 0.6</td>
<td>6.9 ± 0.6</td>
<td>952 ± 134</td>
</tr>
<tr>
<td>INSULIN (PMOL/L)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Placebo</td>
<td>70.3 ± 9.9</td>
<td>63.3 ± 9.1</td>
<td>384.0 ± 48.9</td>
<td>572.7 ± 79.7</td>
<td>513.6 ± 71.0</td>
<td>489.5 ± 94.6</td>
<td>367.5 ± 98.1</td>
<td>54727 ± 21658</td>
</tr>
<tr>
<td>Chlorogenic acid</td>
<td>67.0 ± 9.6</td>
<td>56.7 ± 10.1 *</td>
<td>310.7 ± 55.7 *</td>
<td>491.2 ± 74.6</td>
<td>521.1 ± 101.2</td>
<td>480.2 ± 142.2</td>
<td>407.2 ± 118.0</td>
<td>52285 ± 21658</td>
</tr>
<tr>
<td>Decaffeinated coffee</td>
<td>63.3 ± 9.6</td>
<td>65.0 ± 9.9</td>
<td>331.6 ± 34.4</td>
<td>511.9 ± 51.7</td>
<td>535.5 ± 73.5</td>
<td>463.5 ± 106.8</td>
<td>358.4 ± 111.9</td>
<td>52324 ± 21658</td>
</tr>
<tr>
<td>Trigonelline</td>
<td>61.6 ± 7.6</td>
<td>53.9 ± 9.5</td>
<td>267.0 ± 27.5 *</td>
<td>501.0 ± 82.0</td>
<td>580.3 ± 113.6</td>
<td>495.6 ± 83.3</td>
<td>361.3 ± 91.2</td>
<td>53380 ± 21658</td>
</tr>
</tbody>
</table>

Data are means (± SE) except if noted otherwise. 95% CI denotes 95% confidence interval; T denotes time point in minutes; AUC denotes area under the curve. Baseline values are fasting concentrations and determined right before supplement ingestion; T0 was half an hour after supplement ingestion and right before the start of the OGTT.

* p<0.05 using paired t-tests as compared with placebo value