Correlation of tests of endothelial dysfunction

Correlation of flicker-induced and flow mediated vasodilatation in patients with endothelial dysfunction and healthy volunteers

Berthold Pemp MD¹, Günther Weigert MD¹, Katharina Karl MD¹, Ursula Petzl MD¹, Michael Wolzt MD¹, Leopold Schmetterer PhD¹,², Gerhard Garhofer MD¹

1 Department of Clinical Pharmacology
2 Center for Biomedical Engineering and Physics
Medical University of Vienna

Corresponding author:
Gerhard Garhofer, MD
E-mail: gerhard.garhoefer@meduniwien.ac.at

Additional information for this article can be found in an online appendix at http://care.diabetesjournals.org

Clinical Trial Registry No. NCT00432029; www.clinicaltrials.gov

Submitted 1 December 2008 and accepted 10 March 2009.

This is an uncopiedited electronic version of an article accepted for publication in Diabetes Care. The American Diabetes Association, publisher of Diabetes Care, is not responsible for any errors or omissions in this version of the manuscript or any version derived from it by third parties. The definitive publisher-authenticated version will be available in a future issue of Diabetes Care in print and online at http://care.diabetesjournals.org.
Purpose: Flicker-induced vasodilatation is reduced in patients with vascular related diseases, which has at least partially been attributed to endothelial dysfunction of retinal vessels. Currently, the standard method to assess endothelial function in vivo is flow mediated vasodilatation (FMD). Thus, the present study was performed to investigate whether a correlation exists between flicker-induced vasodilatation and FMD in patients with known endothelial dysfunction and healthy subjects.

Methods: In the present study 20 patients with type 1 diabetes, 40 patients with systemic hypertension (systolic blood pressure 140-159 mmHg; diastolic blood pressure 90-99 mmHg) and/or serum cholesterol levels ≥ 0.65 mmol/l and 20 healthy control subjects were included. The flicker response was measured using the Dynamic Retinal Vessel Analyzer. FMD was determined using a high resolution ultrasound system, measuring brachial artery diameter reactivity during reperfusion after arterial occlusion.

Results: The flicker response of both retinal arteries and veins was significantly reduced in the two patients groups. Likewise, FMD was significantly reduced in patients as compared to healthy controls. However, only a weak correlation between flicker-induced vasodilatation and FMD was observed.

Conclusions: The study confirms that flicker responses and FMD is reduced in the selected patients groups. Whether the weak correlation between FMD and flicker is due to the different stimulation type, the different vascular beds measured or other mechanisms has yet to be investigated.
Stimulating the eye with diffuse flickering light is accompanied by an increase of retinal vessel diameters (1, 2), retinal blood flow (3) and optic nerve head blood flow (4). Although this phenomenon has not yet been clarified in all details, there is general agreement that the increase of blood flow is caused by augmented neural activity in ganglion cells and the connected tissues. This, again, underlines the tight coupling between blood flow, neuronal function and metabolism in the eye.

There is evidence that this adaptive regulation process is impaired under several pathological conditions. In particular, a couple of studies have shown that patients with diabetes mellitus (5, 6), arterial hypertension (7) or glaucoma (8) show a reduced blood flow response to flicker light stimulation. Given that all these diseases go hand in hand with endothelial dysfunction, it has been hypothesized that the reduced flicker response may be related to impaired endothelial vasodilatation of retinal vessels. This is supported by data showing that inhibition of nitric oxide (NO) synthase significantly reduces flicker-induced vasodilatation (9). Whether this impaired vascular function is just a local phenomenon or correlates with impaired endothelial function in other vascular beds remains, however, unclear.

Currently, measurement of flow mediated vasodilatation (FMD) in the forearm, is the most widely used technique for the assessment of endothelial function in vivo. First described in 1992, this method is based on reactive hyperemia after discontinuation of blood flow by inflating a cuff to suprasystolic values (10). The vasodilatation of the brachial artery is caused by shear stress-induced NO production after cuff-deflation. It is known to be endothelium dependent and gives a reliable measure of endothelial function of peripheral arteries (10).

The current study tested the hypothesis that reduced flicker-induced retinal vasodilatation correlates with endothelial dysfunction in the brachial artery as tested by the means of FMD. FMD and flicker-induced vasodilatation were measured in healthy volunteers and in different groups of patients with known endothelial dysfunction, namely patients with type 1 diabetes and patients with mild systemic hypertension and/or hypercholesterolemia.

RESEARCH DESIGN AND METHODS

Subjects: The study protocol was approved by the Ethics Committee of the Medical University of Vienna and followed the guidelines set forth in the Declaration of Helsinki. All patients signed written informed consent prior to inclusion and passed a screening examination including physical and ophthalmological examination during the 10 days before the study day. 80 individuals aged over 18 years were included into this observer blinded, controlled, parallel group study.

Three groups were composed: 20 patients with type 1 diabetes mellitus with no signs of diabetic retinopathy or mild non-proliferative diabetic retinopathy were included in group 1. The eyes were classified according to the Modified Arlie House Classification (11). A further inclusion criterion for IDDM patients was a serum cholesterol level < 0.65 mmol/l.

Group 2 included 40 patients with mild essential systemic hypertension at rest and/or with serum cholesterol levels ≥ 0.65 mmol/l. Hypertension was defined as a blood pressure meeting the criterion
of hypertension grade 1 of the World Health Organization blood pressure classification with systolic blood pressure (SBP) from 140 to 159 mmHg and diastolic blood pressure (DBP) from 90 to 99 mmHg. Blood pressure was measured at two different occasions in a sitting position.

As a control, 20 healthy subjects with SBP < 140 mmHg, DBP < 90 mmHg, serum cholesterol levels < 0.55 mmol/l and normal ocular findings were included in group 3. Care was taken that the control group was comparable in age and sex distribution to the patient groups.

Further exclusion criteria for all subjects were ametropia > 3 dpt, other relevant ocular abnormalities, a clinically relevant illness prior to the study, pregnancy or lactation and a patient or family history of epilepsy. Participants had to abstain from beverages containing alcohol or caffeine for 12 hours before the study.

Retinal Vessel Analyzer: The diameters of one temporal retinal artery and vein between 1 and 2 disc diameters from the margin of the optic disc were continuously measured using the Dynamic Vessel Analyzer (DVA, IMEDOS GmbH, Jena, Germany). The DVA comprises a fundus camera (FF 450, Carl Zeiss Meditec AG, Jena, Germany), a digital video camera and a personal computer with analyzing software for the determination of retinal vessel diameters which are analyzed from digitized images. The system provides excellent reproducibility and sensitivity (12). After selection of the measurement location the DVA is able to follow the vessels during movements within the measurement window. Retinal vessel diameters were measured for four minutes. For the second minute full field flickering light with a frequency of 12.5 Hz was used for stimulation by square wave pattern modulation of the fundus camera illumination at a contrast ratio of 25:1.

Flow Mediated Dilatation (FMD): To measure FMD, each subject was in supine position with the left arm supported on a foam block and a pneumatic cuff placed on the upper arm proximal to the measurement area. A high-resolution ultrasound system with a 7.0 MHz transducer (Vivid 7 Pro, GE Vingmed Ultrasound, Horten, Norway) was used to measure the brachial artery diameter. The probe was fixed in an adjustable swivel arm to maintain an identical position during the experiments. The brachial artery was scanned in a longitudinal section proximal to its bifurcation, which was used as an anatomical marker. The end-diastolic diameter was measured. All measurements were performed by the same experienced operator. Baseline diameter of the brachial artery was assessed as the mean of one minute of continuous measurement. Thereafter the cuff on the upper arm was inflated to suprasystolic pressure (250 mmHg) for 4.5 minutes. FMD was then induced by sudden cuff deflation. The vessel diameter was measured for the following 2 minutes.

Experimental paradigm: All subjects were studied under dilated pupil after instillation with tropicamide (Mydriaticum "Agepha"-Gtt, Agepha, Vienna, Austria). After a 20-minute resting period in a sitting position baseline measurements of arterial blood pressure and pulse rate were performed. Thereafter retinal vessel measurements including flicker stimulation were performed. IOP was measured after the flicker experiment. Finally, FMD was assessed as described above.
Measurement of IOP and systemic hemodynamics: IOP was measured with a slit lamp mounted Goldmann applanation tonometer (Haag-Streit, Bern, Switzerland). Before each measurement two drops of oxybuprocainhydrochloride combined with sodium fluorescein were instilled for local anaesthesia. Systolic, diastolic and mean arterial blood pressures (SBP, DBP, MAP) were measured on the upper arm by an automated oscillometric device (HP-CMS patient monitor, Hewlett Packard, Palo Alto, USA). Pulse rate was automatically recorded by the same unit from a finger pulse oxymetric device.

Statistical analysis: Changes in retinal vessel diameters were expressed as percent change over baseline values. Baseline values were calculated as an average of the last 20 seconds before start of the flicker stimulation. Flicker response was calculated as an average of the last 20 seconds of the stimulation period. Flow-mediated dilatation of the brachial artery was expressed as percentage change of diameter measured 60 seconds after cuff deflation compared to baseline. An ANOVA model was used for significance testing of the retinal vessel response to flicker stimulation and to FMD over time within the groups as well as between the three groups. Pearson product-moment correlation coefficient was calculated to assess correlation between the variables. To adjust for multiple testing a modified Bonferroni procedure was applied (13). For all calculations, a p-value < 0.05 was considered as the level of significance.

RESULTS
Baseline characteristics of all three groups included are given in table 1. IOP was comparable in all three groups. In the diabetes group HbA1c was significantly increased compared to the other groups (ANOVA, p<0.001, table 1). MAP and total cholesterol were increased in group 2 (ANOVA, p<0.003). Blood glucose levels at the time of measurement were 8.4±3.4 mmol/l in patients with diabetes. Average baseline vessel diameters were slightly increased in type 1 diabetes (ANOVA, p=0.018). A detailed summary of concomitant medication is given in Online Appendix Table A1 (available at http://care.diabetesjournals.org). Subjects in the healthy control group were medication-free. Flicker stimulation did not affect IOP or MAP in any of the groups.

Flicker-induced vasodilatation: In the healthy group, stimulation with flicker light induced a vasodilatation of 7.0±2.3 % in retinal arteries (ANOVA, time effect, p<0.001, figure 1) and a dilatation of 6.8±3.4 % (p<0.001) in retinal veins. In patients with type 1 diabetes retinal arterial diameters increased by 2.9±2.8 % (p<0.001) and retinal veins by 4.6±2.0 % (p<0.001). Patients with systemic hypertension and/or hypercholesteremia showed a vasodilatation of 4.3±2.8 % (p<0.001) in retinal arteries and a vasodilatation of 6.0±2.4 % (p<0.001) in retinal veins. Thus, flicker-induced dilatation was reduced in patients with type 1 diabetes and patients with systemic hypertension and/or hypercholesteremia as compared to healthy controls. This effect was significant at a level of p<0.001 for retinal arteries and at a level of p=0.045 for retinal veins (ANOVA, effect between groups). Results between the two patients groups were, however, not significantly different.

Flow mediated vasodilatation: FMD of the brachial artery was 4.3±3.0 % in the healthy group (ANOVA, time effect,
Correlation of tests of endothelial dysfunction

In both, patients with type 1 diabetes and patients with systemic hypertension and/or hypercholesteremia, FMD was significantly attenuated to 2.6±1.7 % in the group 1 (ANOVA, time effect: p<0.001; effect between groups: p=0.045) and to 2.4±2.4 % in group 2 (time effect: p<0.001; effect between groups: p=0.045). Again, FMD of the brachial artery was not significantly different between the two patients groups.

Correlation analysis: A correlation between FMD and flicker-induced vasodilatation in retinal arteries (figure 2, r=0.3, p=0.044) was found. No correlation, however, was observed between FMD and flicker response in retinal veins (data not shown). Flicker-induced vasodilatation was negatively correlated with plasma cholesterol levels (figure 3, r=-0.33, p=0.044) but not with age (r=-0.33, p=0.08). There was also no significant correlation between FMD and age (r=-0.35, p=0.081) or cholesterol (r=-0.22, p=0.090) after p-value adjustment. Given that patients with diabetes are known to have a reduced flicker response, the type 1 diabetes group has been excluded in the latter analyses.

CONCLUSIONS
Given that impaired endothelial function has been observed to be an early feature in several systemic and ocular vascular related diseases, much attention has been paid to the development of methods to non-invasively assess endothelial function in humans. As one of the most widely used techniques, the ultrasound based FMD has been shown to give a reliable estimate of endothelium-dependent vasodilatation (10). FMD is based on the capacity of blood vessels to self-regulate vascular tone in response to changes of shear stress caused by changes of blood flow. This regulation is dependent on endothelium-derived NO (14) and can therefore be used as a marker for endothelial function.

Reduced FMD has been found in patients with mild systemic hypertension (15), hypercholesterolemia (16) and diabetes (17), indicating for an impaired endothelial function in these patient groups. Additionally, it has been shown that FMD can predict future cardiovascular events (18). However, the technique of FMD is hampered by the limited spatial resolution of the ultrasound systems currently available. In addition, measurement of FMD requires significant training and involves a subjective component when data are evaluated.

Flicker-induced vasodilatation may be another attractive non-invasive approach. It has been shown that flicker response is significantly diminished in patients with glaucoma or diabetes (5, 8). Even more importantly, a reduced response has also been observed in patients with systemic hypertension, indicating a potential insight into vascular function in general (7), because an increase of blood pressure or IOP alone does not influence the flicker response (19, 20). These results support the hypothesis that the observed changes reflect long-term alterations of the vasculature. The hypothesis that flicker-induced vasodilatation may at least partially reflect endothelial function has also been encouraged by the observation that flicker-induced vasodilatation is mainly dependent on an intact NO synthesis (9). Endothelial dysfunction due to abnormal release or action of NO is a well-recognized early feature of vascular damage as it has been reported previously in vascular related diseases like diabetes mellitus,
hypercholesterolemia, systemic hypertension and atherosclerosis (16, 21, 22).

Our findings of greater baseline vessel diameters in patients with diabetes are in good accordance with earlier studies (23). However, given that our measures were done only in one single artery and vein and not in all visible vessels our data do not represent total cross-sectional retinal vessel diameters.

We observed a negative correlation between flicker-induced vasodilatation and blood cholesterol. This result is again a hint that endothelial dysfunction is involved in a reduced flicker-induced vasodilatation, because cholesterol and oxidized LDL in particular are clearly associated with endothelial cell dysfunction (25) and reduced bioavailability of NO. Evidence has been provided that reduction of serum cholesterol increases FMD and may therefore be beneficial for endothelial functions (22, 24). Whether this also holds true for flicker-induced vasodilatation has yet to be clarified. Correlations between FMD and age or plasma cholesterol, as observed earlier (16), and between flicker-induced vasodilatation and age failed to reach level of significance after adjustment for multiple testing. Our study was, however, not designed for these outcome analyses and a larger sample size may be required to investigate these issues.

The present study provides evidence that in patients with type 1 diabetes and in patients with systemic hypertension and/or hypercholesterolemia both, FMD and flicker-induced vasodilatation are reduced compared to healthy volunteers. However, our study failed to show a strong correlation between FMD and flicker-induced vasodilatation.

What could be the reason for the differing responses between the two vascular beds? First and most importantly, FMD and flicker light induced vasodilatation differ in the method of stimulation. Whereas the diameter increase in FMD is caused directly by the augmented shear stress in the endothelium and the connected tissue, flicker response is basically the vascular answer to increased neural activity in the retina. This may be of special importance in patients with diabetes or glaucoma, since it cannot be ruled out that in these patients decreased neural activity may partially account for the decreased flicker response.

Secondly, it has to be noted that the properties of the vascular beds investigated differ significantly. Whereas flicker stimulation investigates arteries in an order of 150-250µm, FMD reflects endothelial function in significantly larger vessels with different vessel wall properties. Thus, the weak correlation between FMD and flicker may indicate that the stimulation answer in the conduit arteries and in the smaller retinal arteries do not carry the same information, although both are diminished in patients with endothelial dysfunction. This phenomenon is also known from other experiments, showing that FMD and endothelium dependent vasodilatation assessed with an invasive technique which mainly reflects the endothelial function of resistance arteries, are both independently related to the risk of coronary heart disease (25). Flicker-induced vasodilatation may provide additional information to these techniques, because of the smaller size of vessels assessed. This may particularly be interesting in diseases primarily affecting the microvasculature.
Flicker-induced vasodilatation offers a variety of significant advantages. On the one hand it provides excellent reproducibility and sensitivity (12). On the other hand it is easily performed and quick, although pupil dilatation is required with the fundus camera used in the present experiments. Most importantly, the system does not include a subjective component once an optimal fundus image is achieved.

As a limitation of the study, no information is available about blood nitrate concentration. Although none of the subjects under study was under nitrate medication, we cannot fully exclude that nitrate rich diet may influence FMD or flicker-induced vasodilatation.

In summary, our data indicate that in both patient groups with endothelial dysfunction as assessed with FMD, flicker responses are diminished. The reason why no major correlation was found between FMD and flicker-induced vasodilation, needs to be subject of further studies. Furthermore, whether flicker stimulation may also serve as a predictor for risk of systemic diseases, as it has been show for FMD, has yet to be investigated in longitudinal studies. The system is, however, a candidate for assessing endothelial function in clinical routine, because it induces minimum discomfort to the subject, provides good reproducibility and sensitivity and does not include a subjective component.

Disclosure: No conflict of interest exists for any author.
Correlation of tests of endothelial dysfunction

REFERENCES
Table 1 - Baseline data of the three participating groups

<table>
<thead>
<tr>
<th></th>
<th>Patients with Type 1 Diabetes</th>
<th>Patients with Hypertension and/or Hypercholesterolemia</th>
<th>Healthy Subjects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sex (male/female)</td>
<td>7 / 13</td>
<td>17 / 23</td>
<td>7 / 13</td>
</tr>
<tr>
<td>Age (years)</td>
<td>37 ± 11</td>
<td>47 ± 11 *</td>
<td>38 ± 12</td>
</tr>
<tr>
<td>Mean Arterial Pressure (mmHg)</td>
<td>82 ± 8</td>
<td>90 ± 11 *</td>
<td>83 ± 8</td>
</tr>
<tr>
<td>Cholesterol (mmol/l)</td>
<td>0.50 ± 0.10</td>
<td>0.65 ± 0.10 *</td>
<td>0.45 ± 0.05</td>
</tr>
<tr>
<td>HbA1c (%)</td>
<td>7.5 ± 1.3 *</td>
<td>5.6 ± 0.4</td>
<td>5.2 ± 0.3</td>
</tr>
<tr>
<td>Intraocular Pressure (mmHg)</td>
<td>13 ± 2</td>
<td>14 ± 2</td>
<td>14 ± 3</td>
</tr>
<tr>
<td>Retinal Artery Diameter (µm)</td>
<td>130 ± 20 *</td>
<td>118 ± 16</td>
<td>117 ± 14</td>
</tr>
<tr>
<td>Retinal Vein Diameter (µm)</td>
<td>156 ± 24</td>
<td>151 ± 21</td>
<td>153 ± 19</td>
</tr>
</tbody>
</table>

Data are means ± SD except for sex, * indicate significant differences (p<0.05, ANOVA)
Correlation of tests of endothelial dysfunction

Figure 1 - Flicker-induced vasodilatation and flow mediated vasodilatation in the three different groups included. Group mean values ± standard deviation; * indicate significant differences (p<0.05, ANOVA)

Figure 2 - Correlation analysis between flow mediated vasodilatation (FMD) and flicker response of retinal arteries (r=0.3, p=0.044)
Figure 3 - Correlation analysis between flicker-induced vasodilatation and plasma cholesterol levels (A: $r=-0.33$, $p=0.044$), between flow mediated vasodilatation (FMD) and age (D: $r=-0.35$, $p=0.081$) and vice versa (B: $r=-0.33$, $p=0.08$, C: $r=-0.22$, $p=0.090$)