Postprandial Vascular Effects of Viaject™ compared with Insulin Lispro and Regular Human Insulin in Patients with Type 2 Diabetes Mellitus

Running title: Insulin and postprandial vascular function

Thomas Forst MD; Andreas Pfützner MD, PhD; Frank Flacke PhD; Alan Krasner MD; Cloth Hohberg MD; Eda Tarakci; Philip Pichotta PhD; Senait Forst; Solomon Steiner PhD

Corresponding Author:
Thomas Forst, MD
Email: thomasf@ikfe.de

Clinical trial reg. no. NCT00849576; www.clinicaltrials.gov

Submitted 3 March 2009 and accepted 16 September 2009.

This is an uncopyedited electronic version of an article accepted for publication in Diabetes Care. The American Diabetes Association, publisher of Diabetes Care, is not responsible for any errors or omissions in this version of the manuscript or any version derived from it by third parties. The definitive publisher-authenticated version will be available in a future issue of Diabetes Care in print and online at http://care.diabetesjournals.org.
Objective - Recent studies suggested an impact of prandial insulin delivery on postprandial (pp) regulation of tissue blood flow. This study compared the effect of Viaject™ with human regular insulin and insulin lispro on postprandial oxidative stress and endothelial function in patients with type 2 diabetes mellitus.

Research Design And Methods - Fourteen patients (7 male; age 61.5±1.8 years; duration of diabetes 6.6±4.6 years; HbA1c 7.2±0.5 %; mean±SEM) received a prandial injection of Viaject™, human regular insulin and insulin lispro. At baseline and after a standardised liquid meal test (Ensure Plus™) the pp increase in asymmetric dimethylarginine (ADMA) and nitrotyrosine levels were investigated. In addition, the pp effects on microvascular blood flow, skin oxygenation, and vascular elasticity were measured.

Results - Treatment with Viaject™ (VJ) resulted in a significant reduction in the peak pp generation of ADMA compared with human insulin (HI) and insulin lispro (LI) (VJ: -27.3±22.6; HI: 97.7±24.4; LI: 66.9±33.9 nmol/L; p<0.05 respectively). The pp increase in nitrotyrosine levels were significant less after Viaject™ compared with human regular insulin (VJ: -0.22±0.17, HI: 0.25±0.15 µg/ml; p<0.05), while nitrotyrosine after insulin lispro was in between (LI: 0.09±0.07 µg/ml; n.s.). In parallel, earlier and more pronounced increases in microvascular blood flow and skin oxygenation were obtained after Viaject™ compared to HI or insulin lispro (p<0.05 respectively). All insulin formulations resulted in comparable improvements in central arterial elasticity.

Conclusions - Treatment with Viaject™ reduced pp oxidative stress and improved endothelial function compared to human regular insulin or insulin lispro.
Type 2 diabetes mellitus is closely related to atherosclerosis and the development of cardiovascular complications like myocardial infarction or stroke. Recent studies on cardiovascular endpoints in patients with type 2 diabetes call into question the value of HbA1c focused treatments in reducing macrovascular complications of diabetes (1-3). Other markers such as glucose excursions, hypoglycemia, or postprandial generation of oxidative stress may add important information for the judgment of cardiovascular risk in patients with type 2 diabetes mellitus (1,2).

Postprandial microvascular blood flow is under dynamic regulation, diversely affected by changes in postprandial glucose and insulin levels (4). Increasing postprandial insulin levels stimulate microvascular blood flow by inducing the endothelial release of nitric oxide via the activation of the phosphotydylinostol-3-kinase (PI3K) system (5,6). In contrast, increasing blood glucose levels were shown to oppose the insulin effects on endothelial cells and to impair postprandial microvascular blood flow (7). A reduced first phase insulin release with an augmented increase in postprandial glucose levels followed by an impairment in endothelial function and postprandial microvascular blood flow is an early feature of type 2 diabetes (4,8). These findings suggest that a physiological timing of prandial insulin release fulfils an important role not only in controlling postprandial blood glucose levels but also in maintaining normal tissue perfusion and nutrition. In addition, recent studies have shown that in insulin treated patients with type 1 and type 2 diabetes, the pharmacokinetic profile of insulin formulations affect postprandial microvascular blood flow and that treatment with fast acting insulin analogues reduce postprandial oxidative stress and restores endothelial function more effectively than human regular insulin (9-11).

VIAject™ is a new, ultra-fast acting insulin formulation shown to have a more rapid insulin absorption compared to human regular insulin and to insulin lispro. The aim of this study was to compare the effect of preprandial subcutaneous administration of insulin VIAject™ with preprandial application of human regular insulin and insulin lispro on several markers of endothelial and microvascular function following a standardized liquid meal test in patients with type 2 diabetes.

MATERIALS AND METHODS

Subjects: Fifteen patients with type 2 diabetes treated with stable sulfonylurea and/or metformin treatment were recruited for study participation. Patients were excluded if they had been treated with insulin, peroxisome proliferator-activated receptor-γ agonists, glinides or glucosidase inhibitors within the last 4 weeks prior to screening. All other concomitant treatment was kept stable during the study participation. Additional exclusion criteria were evidence of major micro- or macrovascular complications and impaired cardiovascular, respiratory, hepatic or renal function. One patient terminated the study due to personal time restrictions and did not receive the last insulin treatment. Fourteen patients who received all protocol specified insulin treatments were included in the analyses.

Study procedure: This open label study consisted of a three arm crossover with each treatment administered in random sequence on separate study days. Regular human insulin was given at a dose of 0.10 U/kg. To minimize risk of hypoglycemia, 90% of this dose was used for the insulin lispro administration, and 75% of the regular human insulin dose was used for VIAject administrations. Because this lower VIAject
dose did not result in comparable postprandial glucose control compared to regular human insulin and lispro treatments, all subjects underwent a subsequent VIAject administration at 90% of the regular human dose following the randomized sequence. This dose administration resulted in matched postprandial glucose control and forms the basis for the between treatment comparisons presented.

For study drug administrations, patients arrived at the study site on the morning after an overnight fast for at least 8 hours. An intravenous cannula for blood sampling was inserted into a large antecubital or forearm vein. Subjects remained supine for the duration of the investigations on each investigational day. Human regular insulin was injected 15 minutes in advance and insulin VIAject™ or lispro was injected immediately before the intake of a standardized liquid meal (Ensure Plus™; 56 % carbohydrates, 29 % fat; 15 % protein). No other food or drinks, with the exception of small amounts of mineral water was allowed during the investigational period of 4 hours. At baseline (before liquid meal intake) and 10, 20, 30, 60, 120, 180 and 240 minutes after the liquid meal, blood was taken for the measurement of asymmetric dimethylarginine (ADMA), blood glucose, and insulin. Because of time limitations, the microvascular blood flow (LDF), tissue oxygenation (sO2), the arterial elasticity index (Aix), and nitrotyrosine measurements were only taken at baseline and 30, 60, 120, 180 and 240 minutes thereafter.

Skin blood flow and oxygen saturation measurement: The technique of simultaneous micro-lightguide spectrophotometry and laser Doppler fluxmetry was used to measure microvascular skin blood flow and haemoglobin Hb oxygenation at the lower forearm (O2C, Lea Medizintechnik, Giessen, Germany). A skin probe (LF 2, LEA Medizintechnik, Giessen, Germany) was placed on the thenar surface of the left hand in between the phalanx of the thumb and the metatarsal of the forefinger, directly adjacent to the muscle abductor pollicis. Laser Doppler flux (LDF) and tissue oxygen tension measurements (SO2) were performed at above given time points. As shown in a previous study, this technique allows LDF measurements with a coefficient of variation of 10% and oxygen saturation measurements with a coefficient of variation of less than 20% (12).

Measurement of central arterial elasticity: Central arterial elasticity was measured by the technique of applanation tonometry using a highly sensitive transducer (Sphygmo Cor™, AtCor Medical, West Ryde, Australia). The central arterial waveform was derived from 20 sequential waveform records obtained from the peripheral radial artery using a validated transfer function (13). Only high quality recordings, defined as an in-device quality index > 80 % reproducibility were included in the analysis. The augmentation pressure (AP) was obtained from the difference between the second and the first systolic shoulder of the central pressure wave curve and the augmentation index (Aix) was calculated as the percentage of AP from total pulse pressure.

Laboratory measurements: All laboratory measurements were analysed at the Institute for Clinical Research and Development (ikfe GmbH, Mainz, Germany). Blood samples were centrifuged and kept at -20°C until final analysis. Plasma glucose concentrations were determined by the glucose dehydrogenase method (Super GL, RLT, Möhnesee-Delecke, Germany). Asymmetric di-methylarginine (ADMA) was determined by enzyme-linked immunosorbent assay according to the manufacturers guidelines (ADMA, Immundiagnostik, Bensheim, Germany). Insulin and nitrotyrosine were measured by a chemoluminescence assay (Insulin: Invitron,
Insulin lispro was measured using a radioimmunoassay (Linco Laboratories, St. Charles, Missouri, USA). HbA1c was measured by high-performance liquid chromatography (Menarini Diagnostics, Neuss, Germany).

Statistical analysis: Asymmetric dimethylarginine (ADMA) was chosen as the primary endpoint since a previous study had demonstrated a significant impact of fast acting analogues on the generation of postprandial ADMA levels in patients with type 2 diabetes mellitus (10). A sample size of 14 patients was calculated to provide 80% power, assuming a comparable effect on the postprandial excursion of plasma ADMA levels and considering a two sided test with a significance level of 5%.

This study was designed as a pilot study, without confirmatory sample size consideration. All measurements are presented as mean ± standard error of the mean (SEM). Statistical comparison between fasting and postprandial values and between groups was performed using the Student’s t test (paired and unpaired as appropriate); p<0.05 (two tailed) was considered statistically significant. Spearman correlation coefficients were calculated for each pair of variables.

Peak postprandial ADMA and Nitrotyrosine response was defined as maximum increase from baseline within 120 minutes after the uptake of the liquid meal.

RESULTS

Seven female and seven male patients with type 2 diabetes mellitus were included in the per protocol analysis of the study. Mean ± SD age was 61.5 ± 6.7 years, mean duration of diabetes was 6.6 ± 4.6 years, mean HbA1c was 7.2 ± 0.5 % and mean body mass index was 31.0 ± 3.4 kg/m².

As shown in table 1, absolute plasma glucose levels and the time course of plasma glucose levels was comparable during all three kinds of insulin treatment. Because the active ingredient in VIAject™ is recombinant human insulin, human regular insulin and Viaject™ insulin were measured using the same insulin assay, while insulin lispro was measured with a lispro specific assay, minimizing detection of endogeneous insulin. Comparing VIAject™ to human insulin, plasma insulin levels showed a steeper increase within the first 60 minutes and a faster decrease from 60 minutes onwards. Due to the different assays used, quantitative comparisons between the insulin levels after insulin lispro and the human insulin formulations are not useful.

Postprandial plasma ADMA levels increased during treatment with human insulin, and during treatment with insulin lispro (table 1). The maximal increase in plasma ADMA levels was found 20 minutes after the meal during human insulin and insulin lispro treatment, while no postprandial increase in ADMA levels was observed during VIAject™ treatment. Figure 1 shows peak postprandial ADMA response (20 minutes pp) according to the three treatment conditions. The maximal change in postprandial ADMA levels was significantly lower comparing Viaject™ with human regular insulin or insulin lispro. As shown in table 2, postprandial nitrotyrosine levels increased during treatment with human regular insulin and to a lesser extend with insulin lispro. The maximal increase in plasma nitrotyrosine levels was found 30 minutes after the meal during human insulin and during insulin lispro treatment, while no postprandial increase in nitrotyrosine levels was observed during VIAject™ treatment. Figure 2 shows peak postprandial nitrotyrosine response (30 minutes pp) according to the three treatment conditions. The maximal increase in postprandial nitrotyrosine levels was significantly lower.
Insulin and postprandial vascular function

comparing Viaject™ with human insulin but not with insulin lispro.

In contrast, microvascular blood flow consistently increased during the first 60 minutes after the injection of Viaject™ (table 2). A significantly larger increase in microvascular blood flow was found after Viaject™ compared with human regular insulin or insulin lispro during the first 60 minutes after injection. In parallel with microvascular skin blood flow, skin oxygenation temporarily declined after the injection of human regular insulin and insulin lispro, while a consistent increase in skin oxygenation could be observed after Viaject™ during 60 minutes following the test meal. Changes in skin microvascular blood flow were correlated to changes in skin oxygenation ($r = 0.58$, $p < 0.0001$).

All insulin formulations improved arterial elasticity as given by a decrease in the augmentation index (Aix) with no differences observed between the insulin formulations.

DISCUSSION

Type 2 diabetes mellitus is associated with an increase in micro- and macrovascular complications. There is increasing evidence that postprandial metabolism including the generation of postprandial oxidative stress might predict vascular risk to a greater extent than HbA1c or fasting glucose values (14,15). Beside its role in the regulation of glucose metabolism, insulin has been shown to mediate important vascular effects by stimulating the endothelial secretion of nitric oxide (5,16). Recent studies suggest that the pharmacokinetic profile of subcutaneous insulin absorption might have an impact on the generation of postprandial oxidative stress and the development of endothelial dysfunction (9-11,17). Insulin may directly affect the generation or degradation of ADMA, and insulin resistance is associated with increased ADMA levels (18,19). ADMA has been identified as the major endogenous inhibitor of the physiologic nitric oxide synthase system (20). Elevated ADMA levels cause endothelial nitric oxide synthase eNOS uncoupling, a mechanism which leads to decreased nitric oxide (NO) availability. A study by Fard et al. showed that plasma levels of ADMA were accentuated after high-fat meals. This was accompanied by a decline in endothelial function, as indicated by a reduction in the flow-mediated vasodilation of the brachial artery (21). In a recent study, we were able to demonstrate that the time course of subcutaneous insulin absorption has an impact on the generation of postprandial ADMA levels, supporting the hypothesis that postprandial metabolism significantly influences atherogenic potency in patients with type 2 diabetes mellitus (10).

Viaject™ is a newly developed human insulin formulation which has been shown to provide more rapid subcutaneous absorption than human regular insulin and fast acting insulin analogues in lean non-diabetic subjects (22). In agreement with this observation, our investigation confirmed a more rapid absorption of subcutaneously administered Viaject™ compared with human regular insulin or insulin lispro in patients with type 2 diabetes. Non-insulin treated patients with type 2 diabetes received a single dose of each insulin formulation, which was calculated according to the patient’s body weight and not adjusted for postprandial glucose excursions. Even though postprandial glucose excursions were well matched between the regular human insulin and 90% lispro and Viaject treatments, the treatments could be differentiated in that Viaject treatments were associated with a reduction in postprandial ADMA levels and a diminished generation of oxidative stress.

In addition to the laboratory markers for postprandial endothelial function and oxidative stress, our study revealed that Viaject™ increases microvascular blood flow in the skin comparable to the pp increase in
microvascular blood flow in non-diabetic control subjects (4). In accordance with the increase in microvascular skin blood flow, postprandial skin oxygenation increased after the injection of Viaject™.

Systemic arterial stiffness, or reduced compliance, is an independent predictor of coronary artery disease and cardiovascular mortality. In a recent study, an increase in arterial compliance was observed after the intake of a carbohydrate rich meal, which was predicted by the magnitude of glucose and insulin response (23). Euglycemic clamp studies revealed that insulin rather than glucose is the main determinant of arterial stiffness in the postprandial state (24), and the kinetics of the postprandial insulin release might have an impact on the modulation of arterial stiffness. In contrast to the more distinct effects on microvascular blood flow in skin, all insulin formulations in our study improved vascular elasticity comparably. Although insulin has proven to exert its vasodilatory effect on peripheral resistance vessels by the activation of the PI3K and subsequent NO release from the endothelial cell, insulin effects on large arteries and the mechanism by which insulin modulates arterial elasticity is less clear (23,25). The distinct vascular effects of insulin observed in microvascular blood flow and in central arterial compartments observed in our study implies there are differential effects on microvascular circulation and central arteries.

In conclusion, our study confirms important implications of prandial insulin kinetics for the regulation of endothelial integrity and microvascular function in patients with type 2 diabetes mellitus. The ultra-rapid absorption of Viaject™ insulin was associated with a reduction in postprandial oxidative stress and improvements in microvascular function after a liquid test meal more so than human regular insulin or a fast acting insulin analogue.

Study limitation: This study has important limitations. The study was an exploratory study to evaluate the vascular effects of the new ultra-rapid insulin Viaject™ and needs to be confirmed by larger confirmatory studies. It is unknown if single dose administration reflects the effects that would be seen with chronic dosing. Further studies with larger patient populations and longer observational periods are necessary to ascertain the clinical impact of the results obtained in this short term mechanistic study.

The study did not include a healthy control group. Therefore, no conclusion is possible to what degree the insulin treatments were able to normalize postprandial oxidative stress and endothelial function in type 2 diabetic patients.

ACKNOWLEDGEMENTS

This study was supported by Biodel Inc., Danbury, Connecticut, USA.
REFERENCES

Table 1: Change from baseline in glucose, insulin, asymmetric dimethylarginine (ADMA) after 10, 20, 30, 60, 120, 180, and 240 minutes postprandial (* = p<0.05 vs human regular insulin; # = p<0.05 vs. insulin lispro; HI= regular human insulin, LI=insulin lispro, VJ=VIAject™; Because they are measured with different assays, lispro vs human insulin comparisons are not presented).
Table 2: Change from baseline in nitrotyrosine, skin blood flow (LDF), skin oxygen tension (sO2), and pulse wave index (Aix) after 30, 60, 120, 180, and 240 minutes postprandial (* = p<0.05 vs human regular insulin; # = p<0.05 vs. insulin lispro; HI= regular human insulin, LI=insulin lispro, VJ=VIAject™).

Figure Legends

Figure 1: Peak postprandial change in plasma ADMA levels (HI = Human Insulin, LI = Insulin Lispro, VJ = Viaject™, * = p<0.05 vs. Viaject™).

Figure 2: Peak postprandial change in plasma nitrotyrosine levels (HI = Human Insulin, LI = Insulin Lispro, VJ = Viaject™, * = p<0.05 vs. Viaject™).