Validation of a Type 2 Diabetes Screening Tool in Rural Honduras

Running Header: Diabetes Screening in Honduras

Evan C. Milton1 M.P.H., William H. Herman1,2 M.D., M.P.H., Allison E. Aiello1,3 Ph.D., Kris R. Danielson4 B.S., Milton O. Mendoza-Avelarez5 M.D., John D. Piette2,6 Ph.D.

1 Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor MI
2 Department of Internal Medicine, University of Michigan School of Medicine, Ann Arbor MI
3 Center for Social Epidemiology and Population Health, University of Michigan School of Public Health, Ann Arbor MI
4 College of Osteopathic Medicine, Michigan State University, Lansing MI
5 Yojoa Medical Center, Santa Cruz de Yojoa, Cortés, Honduras
6 Ann Arbor VA Healthcare System, Ann Arbor, MI, USA

Address correspondence to:
John D. Piette Ph.D.
E-mail: jpiette@umich.edu

Submitted 3 June 2009 and accepted 5 November 2009.

This is an uncopyedited electronic version of an article accepted for publication in Diabetes Care. The American Diabetes Association, publisher of Diabetes Care, is not responsible for any errors or omissions in this version of the manuscript or any version derived from it by third parties. The definitive publisher-authenticated version will be available in a future issue of Diabetes Care in print and online at http://care.diabetesjournals.org.
Objective: To validate a low-cost tool for identifying diabetes patients in rural areas of Latin America.

Research Design and Methods: A regression equation incorporating post-prandial time and a random plasma glucose was used to screen 800 adults in Honduras. Patients with a probability of diabetes of 20% or greater were asked to return for a fasting plasma glucose (FPG). A random fifth of those with a screener-based probability of diabetes < 20% was also asked to return for follow-up. The gold standard was an FPG ≥ 126 mg/dl.

Results: The screener had very good test characteristics (area under the receiver operating characteristic curve = 0.89). Using the screening criterion of ≥ 0.42, the equation had a sensitivity of 74.1% and specificity of 97.2%.

Conclusions: This screener is a valid measure of diabetes risk in Honduras and could be used to identify diabetes patients in poor clinics in Latin America.
As the global prevalence of diabetes increases, developing countries will experience 80% of the burden [1]. A recent study found that 7.8% of adults in the capital city of Honduras had diabetes and 42% of them were unaware of their condition [2].

There is little consensus about the most cost-effective means of screening for diabetes in developing countries [3]. The oral glucose tolerance test is difficult to implement, and laboratory-based HbA1c testing is unavailable in many areas [4]. Screening tools have been developed that combine risk factor information into an overall estimate of patients’ probability of disease [4-8]. Models limited to information about patient demographics, BMI, and blood pressure often show only moderate test specificity. In contrast, a screening algorithm that incorporates random plasma glucose test results and post-prandial time has shown excellent predictive accuracy [4, 5]. Additional validation is important to ensure that the instrument has adequate sensitivity and specificity in Latin America, given differences in diet, body structure and other risk factors in the region. The purpose of the current study was to validate this diabetes-screening tool among patients seeking medical care in Honduras.

METHODS

Setting and Sampling: The study was conducted in a primary care clinic serving low-income patients in Central Honduras. Eight hundred adult patients, who were not pregnant, did not have a heart attack in the prior three months, and had no diagnosis of diabetes were recruited. The study was approved by our university Institutional Review Board.

Initial Screening: Participants completed a face-to-face interview and a random plasma glucose test using a fingerstick blood sample and the Accu-Chek® Aviva point-of-care capillary glucose meter. The survey included questions regarding sociodemographic and family history risk factors [9]. Blood pressure and BMI (kg/m²) were recorded with weight measured while the patient wore light clothing and no shoes. Post-prandial time was recorded as the number of hours since the participant last ate or drank anything other than water. Survey responses and clinical measurements were used to calculate their probability of diabetes using the following equation [4]:

\[p(\text{diabetes}) = \frac{1}{1 + \exp(-X)}; \]

where \(X = -10.0382 + 0.0331*(\text{age in years}) + 0.0308*(\text{random plasma glucose in mg/dl}) + 0.25*(\text{self-reported post-prandial time assessed in hours}) + 0.562(\text{if female}) + 0.0346(\text{BMI}). \)

Follow-up Fasting Glucose Test: All participants with an equation-based probability of diabetes \(\geq 20\% \) were asked to return for evaluation at least 24 hours after their initial visit having fasted for at least 8 hours. Every fifth participant with a probability of diabetes <20% also was asked to return for follow-up. During follow-up visits, FPG was measured using 10µl of capillary blood derived from a fingerstick and the HemoCue 200® analyzer. Patients were considered to have diabetes if their FPG was \(\geq 126 \text{ mg/dl} \) [10]. These patients were referred for further evaluation.

Analysis: To validate the prognostic significance of the screening-equation and identify the optimal cut-point for determining a positive screening test, a maximum-likelihood receiver-operating characteristic (ROC) curve was fit using STATA’s ROCFIT procedure [11]. Positive and negative predictive values were then calculated across a range of cut-points.

We assigned all 800 recruited patients into two levels of diabetes risk, using their initial screening-equation-based diabetes
probability and FPG test result (if completed). Within low and high-risk groups, we differentiated individuals whose risk was confirmed based on an FPG and those whose risk was based solely on their initial screening. Between- and within groups, we examined the characteristics of patients associated with the likelihood of returning for an FPG test.

RESULTS

Patient Recruitment and Follow-up: 800 patients participated (266 men and 534 women). Mean age was 38.5 years and the average monthly household income was $319 US. Of the original sample, 8.4% was identified as having a ≥ 20% risk of diabetes and asked to return for FPG testing. The remaining patients had < 20% risk, and of these, 133 (20%) were asked to return for follow-up. Two thirds (66.5%) of all patients asked to return for follow-up returned, with no difference in the proportion returning based on their estimated probability of diabetes. Among high-risk patients, those who failed to return were more likely to be older, male, have little formal education, and have seven or more children.

Test Performance: Using FPG ≥ 126 mg/dl at the gold standard, the screener had very good predictive accuracy with an overall area under the curve (AUC) of 0.89 (figure). Classification accuracy was maximized using a p(diabetes) of 0.42. Using that criterion, 74.1% of all patients with diabetes confirmed by FPG were correctly classified as were 97.2% of patients without diabetes (a false positive rate of 3%). Assuming a diabetes prevalence of 7.4% (the best estimate based on this sample), the test had a positive predictive value of 68% and a negative predictive value of 98%.

DISCUSSION

In Latin America, diabetes often goes undiagnosed until a major health event occurs [1-3, 12-14]. A formula-based screening tool that includes a random plasma glucose, information about post-prandial time, and basic information about other risk factors is a viable approach to identify most patients with diabetes in Honduras.

Comparisons of the AUC in the current study (0.89) with prior studies using the same screening tool show that the screener performed at least as well in Honduras as in other parts of the world [4, 5]. However, the cut-point for identifying probable diabetes has varied across studies. In the current study, a probability of 0.42 was associated with a sensitivity of 74.1% and specificity of 97.2%. In comparison, a suggested cut-point of 0.2 in Egypt was associated with a somewhat lower sensitivity (65%) and roughly equivalent specificity of 96% [4]. In the US, a cut-point of 0.38 was associated with poorer sensitivity (53%) and specificity (89%) [5]. These differences in cut-points and test performance suggest that further evaluation in Latin America would be useful, especially in studies using other diagnostic tests such as the two-hour plasma glucose test, oral glucose tolerance test or HbA1c. Especially since clinical guidelines recommend repeating FPG on a second day for diagnosing diabetes, other studies with different gold-standards are warranted.

High-risk patients who failed to return for FPG testing had increased travel distance, lower educational attainment, and larger family size, suggesting that the screener may be an effective adjunct to confirmatory measures such as an FPG, reaching more patients with diabetes and in particular, those at heightened risk for poor outcomes. While further validation in Latin America is important, this screener should be considered for use throughout the region.

ACKNOWLEDGEMENTS

This research was funded jointly by the University of Michigan School of Public Health Global Health Summer Internship.
Program, the Michigan Diabetes Research and Training Center (NIH # DK020572) and the Michigan Institute for Clinical and Health Research (NIH #UL1RR024986). Dr. Piette is a VA Senior Research Career Scientist. E. Milton and A.E. Aiello were supported by a grant from the Center for Integrative Approaches to Health Disparities (1P60MD00249-01).

Figure – Receiver Operating Characteristic curve. The grey area represents the 95% confidence band. The diagonal reference line defines the points where the test would predict diabetes no better than chance. Sensitivity and specificity of the screening instrument were calculated using a FPG of ≥ 126 mg/dl as the gold standard.
REFERENCES

1. Siegel K, Narayan K. The unite for diabetes campaign: Overcoming constraints to find a
2. Health in the Americas 2007 Volume II; Scientific and Technical publication no. 622
Online: www.paho.org/HIA/archivosvol2/paisesing/Honduras%20English.pdf
4. Tabaei B, Herman W. A multivariate logistic regression equation to screen for diabetes,
5. Tabaei B, Engelgau M, Herman W. A multivariate logistic regression equation to screen
of a risk score as a screening test for undiagnosed hyperglycemia in ethnic minority
groups, Diabetes Care, 2004; 27: 116-122.
screening questionnaires and risk scores for undiagnosed diabetes Arch intern Med 2005;
165: 436-441.
questionnaire to identify people at increased risk for undiagnosed diabetes Diabetes
10. Definition and diagnosis of diabetes mellitus and integrated hyperglycemia. Report of
WHO/IDF consultation, 2006. Online:
11. Dorfman D, Alf E. Maximum likelihood estimation of parameters of signal detection
theory and determination of confidence intervals-rating method data. Journal of
12. Palloni A, McEniry M. Aging and health status of elderly in Latin America and the
13. Barcelo A, Aedo C, Rajpathak S, Robles S. The cost of diabetes in Latin America and
Online: http://www.paho.org/english/ad/dpc/nc/camdi-proposal-1.pdf