Are Hemoglobin Levels Elevated in Type 1 Diabetes?

Running Title: Total hemoglobin and type 1 diabetes

Baqiyyah N Conway, PhD; Rachel G Miller, MS; Trevor J Orchard, MD

University of Pittsburgh

Corresponding author:
Trevor J Orchard, MD
Email: OrchardT@edc.pitt.edu

Additional information for this article can be found in an online appendix at http://care.diabetesjournals.org

Submitted 14 April 2009 and accepted 2 November 2009.

This is an uncopyedited electronic version of an article accepted for publication in Diabetes Care. The American Diabetes Association, publisher of Diabetes Care, is not responsible for any errors or omissions in this version of the manuscript or any version derived from it by third parties. The definitive publisher-authenticated version will be available in a future issue of Diabetes Care in print and online at http://care.diabetesjournals.org.
Objective: While lower hemoglobin is generally associated with adverse events in diabetes, we have recently observed in type 1 diabetes that those with overt nephropathy had hemoglobin levels as high as 18.8 g/dL. We thus explored whether hemoglobin concentrations are generally higher in type 1 diabetes.

Research Design and Methods: Baseline (1986-1988) hemoglobin levels from the Pittsburgh Epidemiology of Diabetes Complications (EDC) of type 1 diabetes study were compared to general population data from the NHANES III in the same age range as the EDC population (8-48 years).

Results: Both male and female EDC study participants had significantly higher hemoglobin levels than their NHANES III counterparts (men: 16.0 vs 15.1 g/dL, p<0.0001; women: 14.1 vs 13.3 g/dL, p<0.0001). The difference between the two populations was greatest in adolescent females.

Conclusions: Hemoglobin levels maybe higher in type 1 diabetes than in the general population which may have important clinical implications.
Although low hemoglobin is generally associated with adverse events in diabetes (1) and kidney disease (2), we have recently observed relatively high hemoglobin levels (as high as 18.8 g/dL) among individuals with type 1 diabetes and overt nephropathy (3) compared to the general renal disease population (4). This led us to question whether hemoglobin levels are generally elevated in type 1 diabetes. We therefore assessed 652 individuals from the Pittsburgh Epidemiology of Diabetes Complications Study (EDC) of type 1 diabetes and compared the hemoglobin levels observed with those of the general NHANES III population.

RESEARCH DESIGN AND METHODS

EDC is a 20-year prospective study based on a well-defined cohort with childhood onset (<17 years) type 1 diabetes living within 100 miles of the University of Pittsburgh at study baseline (5; 6). For these analyses, baseline data (1986-1988) from the 652 participants (50.5% female, 98% Caucasian) were examined.

Blood samples were assayed for hemoglobin and glycated hemoglobin (HbA1). Overt nephropathy was defined as albumin excretion rate >200 μg/min or dialysis/renal transplantation.

Hemoglobin in EDC was measured using the Coulter Counter Model S-Plus IV automated blood cell counter (Coulter Electronics, Hialeah, Florida). General population comparison data were retrieved from NHANES III (years 1988-1994) (7), for Caucasians in the same age range as the EDC population, i.e. 8-48 years. Hemoglobin in NHANES III was measured using a semiautomated cell counter (Coulter hemoglobinometer) (7).

Appropriate sampling weights were used to obtain unbiased estimates of hemoglobin means and standard errors in NHANES III. These sampling weights account for the complex design of the NHANES III survey, including oversampling of certain subgroups and nonresponse bias, and provide estimates that are representative of the non-institutionalized, US population. Mean hemoglobin levels were calculated using PROC SURVEYMEANS in SAS 9.1.3 (SAS Institute Inc., Cary, NC).

RESULTS

Hemoglobin ranged from 8.3-20.0 g/dL in EDC and from 5.2-18.7 g/dL in NHANES III. Relative to the general population, EDC participants had higher hemoglobin levels overall (15.1 vs. 14.2 g/dL, p<0.0001) (Figure 1) and gender-specifically (men: 16.0 vs. 15.1 g/dL, p<0.0001; women: 14.1 vs. 13.3 g/dL, p<0.0001).

The difference between the two populations was greatest in teenage females; 15-19 year-old girls with type 1 diabetes had hemoglobin levels approximately 2 g/dL higher than similarly aged NHANES III females; the difference in boys was approximately 1 g/dL. EDC teenage girls had hemoglobin levels similar to those of NHANES III teenage boys (Figure 1). In males with type 1 diabetes, hemoglobin levels were stable until about age 14 when they began to rise, peaking at 16.9 g/dL at approximately age 22. A similar rise in hemoglobin, though less steep, was seen in NHANES III males (Figure 1). In females with type 1 diabetes, hemoglobin levels did not display the same pattern of a constant rise throughout adolescence observed in males, but rose sharply, by 1.6 g/dL, at the beginning of their teens, remaining elevated throughout the teen years, peaking at 15.0 g/dL. In contrast, in NHANES III females aged 12-19, hemoglobin remained constant (Figure 1).

In the general population adults, hemoglobin levels remained relatively stable
in both genders. In the EDC type 1 diabetes population, hemoglobin in males began to drop in their mid-twenties whereas in females, this occurred earlier (Figure 1). The decline in hemoglobin in adult type 1 diabetes males could be explained by overt nephropathy, as those without overt nephropathy showed no decline in adulthood after their mid-twenties. In adult type 1 diabetes females, this difference by overt nephropathy status was less marked; women without overt nephropathy still showed this age related decline and the difference by overt nephropathy status did not reach statistical significance until age 40. (Online Appendix Figure 1 which is available at http://care.diabetesjournals.org).

To determine whether the elevated hemoglobin observed in EDC might simply be due to increased hemoconcentration from dehydration secondary to poor glycemic control, analyses were repeated with EDC participants restricted to those with 1) HbA1 levels ≥ median and 2) HbA1 levels ≤ median. Similar results were obtained to those in Figure 1.

In a subanalysis, hemoglobin levels in our thirteen African American females with type 1 diabetes (aged 18-39) did not differ from our Caucasian females (13.7 vs. 14.1 g/dL, p=0.20), but were significantly higher than NHANES III African American females (13.7 vs. 12.4 g/dL p<0.0001). Hemoglobin levels significantly differed between NHANES III African American and Caucasian females (12.4 vs. 13.2 g/dL, p<0.0001). Sample size prohibited formal analyses in males.

CONCLUSIONS

We have demonstrated that hemoglobin levels are higher in type 1 diabetes than in the general population, by approximately 1 g/dL. To our knowledge, this is the first report to document this finding. We have shown that this difference is greatest for adolescent females, particularly striking since in the general population the adolescent rise in hemoglobin is only observed in males (8). Although hemoglobin levels began to decline in type 1 diabetes in the early to mid twenties this decline was not observed in the general population. In men with type 1 diabetes, kidney disease largely accounted for this decline. The increase in hemoglobin was unrelated to glycemic control.

Potential explanations include a response to generalized hypoxia secondary to vascular disease, or a response to testosterone which has been reported to be increased in type 1 diabetes (9; 10). In addition to the erythropoietic effects of testosterone, insulin, IGF-1, and IGF-2 stimulate erythropoietin production in astrocytes (11). Finally, intermittent ketosis might lead to increased beta-hydroxy-butyrate resulting in higher fetal hemoglobin (HbF) (12) and hence total hemoglobin levels. Elevated HbF has been observed in both children and adults with type 1 diabetes and correlated only weakly (13) or not at all (14) with glycemic control, but increased in adolescence (14). These data have potentially important clinical implications, not only for interpreting hemoglobin values in type 1 diabetes, but also for complications, as we have recently reported that high hemoglobin is a risk factor for proliferative retinopathy in men while in women, who are more likely to be in normal to low end of the hemoglobin distribution, a U-shaped relationship exists (15).

ACKNOWLEDGEMENTS

This work was supported by NIH grant DK34818. We would also like to thank the Pittsburgh Epidemiology of Diabetes Complications study participants for their dedicated participation.

Disclosure: The authors have no conflict of interest to declare.
REFERENCES
Figure Legend

Figure 1. Hemoglobin Distributions EDC and NHANES III.
 a. Hemoglobin distribution in NHANES III and EDC populations. b. Hemoglobin levels in NHANES III and EDC males by age group. Solid line = NHANES III. Dotted line = EDC. c. Hemoglobin levels in NHANES III and EDC females by age group. Solid line = NHANES III. Dotted line = EDC.

Figure: