Baseline factors in diabetic dyslipidemia

Relationships Between Metabolic Syndrome and Other Baseline Factors and the Efficacy of Ezetimibe/Simvastatin and Atorvastatin in Patients with Type 2 Diabetes Mellitus and Hypercholesterolemia

RONALD B. GOLDBERG, MD1; JOHN R. GUYTON, MD2; THEODORE MAZZONE, MD3;
RUTH S. WEINSTOCK, MD, PHD4; ADAM B. POLIS, MA5; DIANE TIPPING, MS5;
JOANNE E. TOMASSINI, PHD5; ANDREW M. TERSHAKOVEC, MD, MPH5

From the 1University of Miami Miller School of Medicine, Miami, Florida; 2Duke University, Durham, North Carolina; 3University of Illinois, Chicago, Illinois; 4SUNY Upstate Medical University and VA Medical Center, Syracuse, New York; and 5Merck & Co., Inc., North Wales, Pennsylvania

Running title: Baseline factors in diabetic dyslipidemia

Corresponding author:
Ronald B. Goldberg, MD
Email: rgoldber@med.miami.edu

Additional information for this article can be found in an online appendix at http://care.diabetesjournals.org

Submitted 21 September 2009 and accepted 5 February 2010.
Objective—To investigate relationships between baseline factors and treatment-associated efficacy changes in type 2 diabetes.

Research design and methods—Multivariable analyses of treatment-response in 1,229 type 2 diabetes patients with hypercholesterolemia, who received ezetimibe/simvastatin or atorvastatin in a randomized, double-blind, 6-week study.

Results—Increasing age was related to improvements in all lipid assessments. Men had greater triglyceride and non-HDL-C reductions than women, and Black/Hispanic patients had less favorable lipid-effects than other races/ethnicities. Increasing baseline LDL-C was associated with improvements in most lipids; higher baseline non-HDL-C with improved HDL-C and triglycerides; higher baseline HDL-C with greater non-HDL-C and hsCRP reductions; and higher baseline hsCRP with smaller LDL-C, non-HDL-C and apolipoproteinB reductions. Patients with high baseline non-HDL-C or triglycerides less frequently attained LDL-C targets. Obesity was inversely related to HDL-C and hsCRP changes, and higher baseline HbA1C to apolipoproteinB reductions. Metabolic syndrome was not a significant predictor.

Conclusions—Treatment-responses in type 2 diabetes patients were related to baseline factors, though treatment-effects (ezetimibe/simvastatin>atorvastatin) remained consistent. The presence of predictive factors should be considered in planning lipid-altering therapy.
Treatment-response to statins can vary in patients with type 2 diabetes, attributed to various patient-related characteristics, including demographic and metabolic factors, baseline lipid levels, genetic polymorphisms and the metabolic syndrome (MetS) (1-6). This analysis explored relationships between various baseline characteristics and changes in lipids and high-sensitivity C-reactive protein (hsCRP) in the presence/absence of MetS in the Vytorin versus Atorvastatin in Patients With Type 2 Diabetes Mellitus and Hypercholesterolemia (VYTAL) study (7).

RESEARCH DESIGN AND METHODS
This was a post-hoc analysis of the randomized, double-blind, 6-week VYTAL study in 1,229 type 2 diabetes patients with hypercholesterolemia who received ezetimibe/simvastatin (10/20mg/day) versus atorvastatin (10 and 20mg/day) or 10/40mg ezetimibe/simvastatin versus 40mg atorvastatin (7). Type 2 diabetes patients, 18-80 years, with HbA1C levels ≤8.5%, triglycerides ≤4.52mmol/l and LDL-C levels ≥2.59mmol/l were included. This analysis was performed in randomized patients who had baseline and ≥1 post-baseline measurements (modified-intent-to-treat population) (7). Prespecified baseline factors found significant by univariate analysis for association with week-6 percent changes from baseline in lipids and hsCRP were assessed in multivariable linear-regression models using continuous and categorical variables in separate analyses. Factors were identified for inclusion in the final model using a model-based, variable-deletion process. Triglycerides and hsCRP were analyzed in this model using normal-scores-rank-transformations for percent changes. Proportions of patients attaining prespecified LDL-C levels (<1.81 and <2.59mmol/l) were assessed using similar logistic-regression models.

RESULTS
Baseline characteristics and levels of efficacy parameters at baseline and study-end are provided in the online appendix (available at http://care.diabetesjournals.org) Tables A and B (7). Baseline factors found to be significant predictors of percent change by univariate analysis (Appendix Table-C) were further assessed by multivariable analysis. Results of the analyses of baseline predictors on percent changes from baseline are displayed in Fig.1 and Appendix Fig.S1 (categorical), and Appendix Table-D (continuous). Increasing age was significantly related to all efficacy parameters analyzed except hsCRP. Patients ≥65 versus <65 years had greater reductions from baseline in LDL-C, non-HDL-C, apolipoproteinB and triglycerides, better LDL-C target attainment, and larger HDL-C and apolipoproteinA-I increases. Black/Hispanic patients had smaller LDL-C, non-HDL-C and apolipoproteinB reductions, and less LDL-C target attainment than White/Other race/ethnicities. Men had greater triglyceride and non-HDL-C reductions than women. Higher baseline LDL-C was associated with greater reductions in most lipids as well as smaller HDL-C increases and triglyceride reductions, and increasing baseline non-HDL-C with improvements in HDL-C and triglycerides. Higher baseline HDL-C was related to greater non-HDL-C and hsCRP reductions, and smaller HDL-C and apolipoproteinA-I increases. Patients with higher baseline non-HDL-C or triglycerides attained LDL-C targets less frequently. Higher baseline hsCRP levels were related to smaller LDL-C, non-HDL-C and apolipoproteinB reductions, and larger hsCRP reductions. Higher baseline BMI was associated with smaller HDL-C increases and hsCRP reductions, and higher baseline...
Baseline factors in diabetic dyslipidemia

HbA1C with smaller apolipoproteinB reductions. The presence of MetS had no effect. Ezetimibe/simvastatin treatment (versus atorvastatin) was associated with significantly greater improvements in all efficacy variables.

The likelihood of attaining LDL-C <1.81mmol/l was related to the number of positive predictive baseline factors (Fig.1,G-H). Approximately 31% of patients with 0 or 1 factor achieved LDL-C <1.81mmol/l compared with 46.4% with 2 factors, 61.5% with 3 factors, 74.2% with 4 factors and 100% with all 5 factors. Without the treatment factor in the model, 41.6% with 0-1 factors and 75.9% with all 4 factors achieved LDL-C <1.81mmol/l.

DISCUSSION

In this study, age and race/ethnicity significantly predicted LDL-lowering, consistent with previous findings in statin-treated patients (4,5,8). These effects were not attributable to differences in study-therapy adherence, which was high for both age (98.1%-98.2%) and race/ethnicity (95.9%-98.7%) subgroups. Alterations in LDL-metabolism (e.g. diminished very-low-density-lipoprotein particle production), may account for the more robust therapeutic LDL-C-lowering in older patients (9,10). Attenuated LDL-C-lowering responses in Black patients following statin treatment have been linked to single-nucleotide polymorphisms in HMG-CoA reductase (11). The age-associated LDL-C increases observed in this study may reflect altered HDL-mediated cholesterol efflux and/or other physiological functions in older patients (12).

The diminished LDL-C-lowering response observed in hypertriglyceridemic patients may be attributed to the increased prevalence of small, dense LDL-particles in these patients that bind less effectively to LDL-receptors (5,6). Higher baseline HDL-C levels were negatively-related to percent change from baseline in HDL-C, as reported previously (5). Whether MetS provides greater clinical-value than its individual components is debated (13). In this analysis, factors which contribute to MetS (BMI, HbA1C, triglycerides, HDL-C), and the inflammatory marker, hsCRP, were significant predictors of lipid changes; whereas MetS itself was not related to treatment-responses, although there were relatively few subjects without MetS (2,3,6). Higher baseline hsCRP levels were associated with attenuated LDL-C-lowering, an effect not previously noted to our knowledge, and perhaps related to heightened levels of inflammation (9). Obesity-related changes in HDL-C metabolism may account for the smaller HDL-C increases associated with higher BMI (5,14). Since adipose-tissue inflammation in obese patients may strongly influence hsCRP levels, smaller hsCRP reductions observed in obese patients could reflect lesser statin-effectiveness in suppressing adipose versus vascular sources of inflammation (6,9). The association between increasing baseline HbA1C and smaller apolipoproteinB reductions may be related to the presence of small, dense LDL-particles in these patients that vary inversely with HbA1C levels (15).

When considered cumulatively, the baseline factors positive for treatment-response, namely age >65 years, baseline triglycerides <1.7mmol/l, baseline non-HDL-C <4.14mmol/l and race/ethnicity other than Black/Hispanic, predicted attainment of LDL-C <1.81mmol/l irrespective of treatment. These results indicated that Black or Hispanic subjects, those <65 years, and patients with elevated triglycerides and non-HDL-C levels, may require more intensive therapy to attain LDL-C goal than patients without these factors.

It should be noted this exploratory analysis had limited statistical power, and some observations may have been influenced by chance-variation because of multiple
comparisons. Nonetheless, several observations, notably the impact of age and race/ethnicity, are consistent with previous statin studies. In summary, patient-related characteristics can influence efficacy in type 2 diabetes patients with hypercholesterolemia following ezetimibe/simvastatin and atorvastatin treatment. These factors, and particularly the collective presence of positive predictors, should be considered in planning lipid-altering therapies in these patients.

ACKNOWLEDGMENTS:
Funding for this study was provided by Merck/Schering-Plough Pharmaceuticals, North Wales, PA. The study sponsor, Merck & Co., Inc., facilitated the design and conduct of the study and collection and analysis of the study data.

Author contributions: All authors jointly developed the manuscript content and were involved in at least one of the following: conception, design, data acquisition, analysis, statistical analysis, interpretation of data, drafting the manuscript, and/or revising the manuscript for important intellectual content. All authors provided final approval of the version to be published. Editorial assistance was provided by Stephen W. Gutkin, Rete Biomedical Communications Corp. (Wyckoff, NJ).

Author financial interests related to this study: Drs. Goldberg, Guyton, Mazzone, and Weinstock were investigators in the VYTAL study and have received honoraria from Merck/Schering-Plough Pharmaceuticals, Inc. Dr. Guyton has also received research grants and honoraria from Merck & Co., Inc., Pfizer Inc., and Schering-Plough Corp. Dr. Goldberg has also received research grants and honoraria from Merck & Co., Inc., and Pfizer Inc., and has served on speaker’s bureaus and as a consultant and/or advisory board member for those companies. Dr. Mazzone also reports receiving honoraria from Merck and has served on Merck’s speaker’s bureau and as a consultant for Merck & Co, Inc. Dr. Weinstock also reports receiving research grants/support from Merck and Pfizer, and honoraria from Merck. Drs. Tershakovec and Tomassini, and Mr. Polis, are employees of Merck & Co., Inc., and own stock and/or stock options in the company. Ms. Tipping provided statistical analysis support funded by Merck/Schering-Plough Pharmaceuticals, Inc.
REFERENCES

Figure Legend

Figure 1. Multivariable association of categorical factors with the percent change from baseline in LDL-C (A), HDL-C (B), non–HDL-C (C) and apolipoproteinB (D). P-values (*p<0.05, **p<0.01, ***p<0.001) in A-D correspond to the significance of marked (*) category compared with lowest category for the variable. Association (logistic-regression) of categorical factors with the attainment of LDL-C <2.59mmol/l (<100mg/dl) (E) and <1.81mmol/l (<70mg/dl) (F). (Note: When non-HDL-C was removed from the multivariable model, baseline LDL-C was a significant factor for attainment of these LDL-C levels, presumably because of the high correlation [r=0.90] of baseline non-HDL-C with baseline LDL-C levels). Proportion of patients who attained LDL-C <1.81 mmol/l (<70 mg/dl) by the number of positive predictive factors in the multivariate model (G and H). The four baseline factors associated with LDL-C <1.81mmol/l: age ≥65 years, baseline triglycerides <1.70 mmol/l (<150 mg/dL), baseline non-HDL C <4.14 mmol/l (160 mg/dl), and race/ethnicity other than black or Hispanic are shown in (G). The four baseline factors additionally with ezetimibe/simvastatin (versus atorvastatin) treatment are shown in (H). n/N=the number of patients with the indicated number of positive factors in the category of all patients assessed for that number. To convert mmol/l to mg/dl, divide by 0.0259. BL=baseline