Association of Vitamin D with Insulin Resistance and Beta-Cell Dysfunction in Subjects at Risk for Type 2 Diabetes

Sheena Kayaniyil¹, MSc, Reinhold Vieth¹,², PhD, Ravi Retnakaran³, MD, Julia A. Knight⁴,⁵, PhD, Ying Qi³, MSc, Hertzl C. Gerstein⁶, MD, Bruce Perkins³, MD, Stewart B. Harris⁷, MD, Bernard Zinman³,⁵, MD, Anthony J. Hanley¹,³,⁴, PhD

¹Department of Nutritional Sciences, University of Toronto, Toronto, ON; ²Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON; ³Division of Endocrinology, Department of Medicine, University of Toronto, Toronto, ON, Canada; ⁴Dalla Lana School of Public Health, University of Toronto, Toronto, ON; ⁵Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Canada; ⁶Division of Endocrinology and Metabolism and the Population Health Research Institute, Department of Medicine, McMaster University and Hamilton Health Sciences, Hamilton, Ontario, Canada; ⁷Centre for Studies in Family Medicine, University of Western Ontario, London, ON, Canada.

Correspondence to:
Anthony Hanley
Email: anthony.hanley@utoronto.ca

Additional information for this article can be found in an online appendix at http://care.diabetesjournals.org

Submitted 18 December 2009 and accepted 26 February 2010.

This is an uncopyedited electronic version of an article accepted for publication in Diabetes Care. The American Diabetes Association, publisher of Diabetes Care, is not responsible for any errors or omissions in this version of the manuscript or any version derived from it by third parties. The definitive publisher-authenticated version will be available in a future issue of Diabetes Care in print and online at http://care.diabetesjournals.org.
Objective: To examine cross-sectional associations of serum vitamin D [25-hydroxyvitamin D, 25(OH)D] concentration with insulin resistance (IR) and beta (β)-cell dysfunction in 712 subjects at risk for type 2 diabetes.

Research Design and Methods: Serum 25(OH)D was determined using a chemiluminescence immunoassay. Insulin sensitivity/resistance were measured using the Matsuda index (ISOGTT) and HOMA-IR. Beta-cell function was determined using both the insulinogenic index divided by HOMA-IR (IGI/IR) and the Insulin Secretion Sensitivity Index-2 (ISSI-2).

Results: Linear regression analyses indicated independent associations of 25(OH)D with ISOGTT and HOMA-IR (β=0.004, p=0.0003 and β=-0.003, p=0.0072 respectively), and with IGI/IR and ISSI-2 (β=0.004, p=0.0286 and β=0.003, p=0.0011 respectively), after adjusting for sociodemographics, physical activity, supplement use, parathyroid hormone and BMI.

Conclusions: Vitamin D may play a role in the pathogenesis of type 2 diabetes, as 25(OH)D concentration was independently associated with both insulin sensitivity and β-cell function among individuals at risk of type 2 diabetes.
Emerging evidence suggests a role for vitamin D in the etiology of type 2 diabetes (1). However, associations of vitamin D with insulin resistance (IR) and especially beta (β)-cell dysfunction have been inconsistent (2-7). Therefore, our objective was to assess the association of serum vitamin D concentration with IR and β-cell dysfunction in a large, ethnically-diverse North American cohort at risk of type 2 diabetes.

RESEARCH DESIGN AND METHODS

A detailed methodology for this study has been described previously (8). Briefly, participants in the PROspective Metabolism and ISlet cell Evaluation (PROMISE) cohort were recruited from Toronto and London, Ontario, Canada, in 2004-2006. Participants were age 30 and older and at high risk for type 2 diabetes and/or metabolic syndrome (8). The current study includes 712 subjects free of diabetes as confirmed by oral glucose tolerance tests (OGTT).

Fasting blood samples were collected and 75-gram OGTTs were performed. Insulin sensitivity was quantified using the ISOGTT index (9) and insulin resistance was measured using the Homeostasis Model Assessment of Insulin Resistance (HOMA IR) index (10). Beta-cell dysfunction was determined by dividing the insulinogenic index by HOMA-IR (IGI/IR) (11) and by calculating the Insulin Secretion Sensitivity Index 2 (ISSI-2) (12).

Serum vitamin D, specifically 25-hydroxyvitamin D [25(OH)D], was measured using DiaSorin’s “25-OH Vitamin D TOTAL” competitive chemiluminescence immunoassay on an automated LIAISON® analyzer (Stillwater, MN). BMI and waist circumference were determined using standardized procedures (8). Parathyroid hormone (PTH) was measured using an electrochemiluminescence immunoassay on the Roche Modular E170 analyzer (Laval, QC). Structured questionnaires assessed self-reported ethnicity, smoking and physical activity, and included an open-ended question on current medication and supplement use. Season was defined using the participant’s date of clinical assessment, and categorized as May-October (summer/early fall) and November-April (winter/early spring).

SAS Version 9.1 (Cary, NC) was used for all analyses. Natural logarithmic transformations were applied for all non-normally distributed variables. Univariate analyses, including chi-square tests, analysis of variance (ANOVA), and Spearman correlation were conducted to assess the relationship between serum 25(OH)D and potential covariates. Multiple linear regression analyses were conducted to investigate the independent associations of 25(OH)D with measures of insulin sensitivity/resistance (ISOGTT and HOMA-IR) and β-cell dysfunction (IGI/IR and ISSI-2). Model 1 adjusted for sex, age, ethnicity and season; model 2 additionally adjusted for supplement use, total physical activity and PTH; and model 3 additionally adjusted for BMI. Possible effect modifiers were also investigated.

RESULTS

The sample included 498 (69.9%) females and 462 (64.9%) Caucasians, and the mean age of the participants was 49.6 ± 10.0 years. The mean serum 25(OH)D concentration was 55.81 ± 22.90 nmol/L (range, 10.0 – 161.0). Participant characteristics across quartiles of 25(OH)D concentration, and correlations for continuous variables are presented (Online Appendix Table A1 available at http://care.diabetesjournals.org). A significant seasonal effect was evident, with higher 25(OH)D concentrations in the summer/early fall (n=343; 59.11 ± 23.71 nmol/L) than in the winter/early spring (n=351; 52.58 ± 21.64 nmol/L).
nmol/L) (p=0.0002). Univariate analyses indicated a significant positive association between 25(OH)D and ISOGTT (r=0.30, p<0.0001), a significant negative association between 25(OH)D and HOMA-IR (r=−0.29, p<0.0001), as well as significant positive associations between 25(OH)D and IGI/IR (r=0.14, p=0.0002) and ISSI-2 (r=0.14, p=0.0002).

In multivariate regression analyses, serum 25(OH)D was a significant independent predictor of insulin sensitivity (ISOGTT and HOMA-IR) and beta-cell function (IGI/IR and ISSI-2) across all models (Table 1). There was a slight attenuation of the association of 25(OH)D on measures of insulin sensitivity and beta-cell function after additional adjustment for BMI, but the association remained significant.

We found a significant interaction by BMI, reflecting weaker magnitudes of association of 25(OH)D with measures of insulin sensitivity and beta-cell function in obese individuals (BMI ≥ 30 kg/m²) (Online Appendix Table A2).

CONCLUSIONS

This study demonstrated independent associations of 25(OH)D with both insulin sensitivity and beta-cell function in subjects without diabetes. The major contribution of this study is the finding of an association between vitamin D and beta-cell function. Previous studies assessing the association between 25(OH)D and beta-cell function have yielded inconsistent results (2-4,13,14), possibly resulting from small sample sizes, the use of indirect measures of beta-cell function (i.e., primarily fasting based measures), and/or the lack of adjustment for background IR. In contrast, our study found a significant positive association between vitamin D and beta-cell function, using validated measures of beta-cell function which account for the hyperbolic relationship between insulin secretion and insulin sensitivity (12).

Although an inverse association between 25(OH)D and IR has been observed in previous studies (3-5,7), the majority of these studies relied primarily on simple fasting-based measures, and most did not adjust for physical activity or PTH. In addition, negative findings have been reported, even when more direct measures of insulin sensitivity were used (2,6). Possible reasons for this discrepancy in findings may be due to small sample sizes or differences in study populations. Gulseth et al.’s negative findings (2010) (2) among those with the metabolic syndrome may be attributable to the sequestering of 25(OH)D in adipose tissue (15), resulting in reduced bioavailability of 25(OH)D. Similarly, we found a weaker association of vitamin D with IR and beta-cell function in those with a BMI ≥ 30 kg/m².

Strengths of the current study include the measurement of serum 25(OH)D concentration, as well as the use of validated measures of both IR and beta-cell dysfunction. In addition, the current study included a large, well-characterized multi-ethnic sample of subjects free of type 2 diabetes. Limitations include the cross-sectional design, and the lack of “gold standard” measures of IR and beta-cell function, which are invasive and costly to use in large studies. Lastly, 25(OH)D was measured in blood samples obtained across different seasons, although we controlled for a seasonal effect and assessed potential interactions.

In conclusion, vitamin D was significantly related to IR and beta-cell function in a multi-ethnic sample at risk for type 2 diabetes. Further research is needed on the prospective association between vitamin D and the underlying disorders of type 2 diabetes in large population-based studies.

ACKNOWLEDGEMENTS

We would like to thank our study subjects for their participation. We also wish to thank Jan Neuman, Stella Kink, Sheila Porter, Mauricio
Marin, and Annette Barnie for their dedication and expert technical assistance. The study was supported by grants from the Canadian Diabetes Association (CDA) and the University of Toronto, as well as an unrestricted research grant from Glaxo-SmithKline (GSK). S Kayaniyil is supported by the Canadian Institutes of Health Research (CIHR) Canada Graduate Scholarship. R Retnakaran is supported by a Canadian Institutes of Health Research (CIHR) Clinical Research Initiative New Investigator Award, CDA Clinician-Scientist incentive funding and a University of Toronto Banting and Best Diabetes Centre New Investigator Award. H. Gerstein holds the McMaster University Population Health Institute Chair in Diabetes Research (donated by Aventis). S. Harris holds the CDA Chair in National Diabetes Management and The Ian McWhinney Chair of Family Medicine Studies at The University of Western Ontario. B Zinman holds the Sam and Judy Pencer Family Chair in Diabetes Research at Mount Sinai Hospital and University of Toronto. AJ Hanley holds a Tier II Canada Research Chair in Diabetes Epidemiology.

H. Gerstein declares that he is leading an international trial of vitamin D supplementation (TIDE trial) sponsored by GSK. All other authors declare no conflict-of-interest.
REFERENCES
(9) Matsuda M, DeFronzo RA. Insulin sensitivity indices obtained from oral glucose tolerance testing: comparison with the euglycemic insulin clamp. Diabetes Care 1999;22(9):1462-1470.
Table 1. Multiple linear regression analysis for associations of Vitamin D with measures of insulin sensitivity/resistance and β-cell function

<table>
<thead>
<tr>
<th>Outcome per unit increase in baseline 25(OH)D</th>
<th>Model 1*</th>
<th>Model 2†</th>
<th>Model 3‡</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>β</td>
<td>P value</td>
<td>R² §</td>
</tr>
<tr>
<td></td>
<td>(95% CI)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Insulin Sensitivity/Resistance measures</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IS-OGTT</td>
<td>0.009</td>
<td><0.0001</td>
<td>0.10</td>
</tr>
<tr>
<td></td>
<td>(0.007,0.011)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HOMA-IR†</td>
<td>-0.010</td>
<td><0.0001</td>
<td>0.11</td>
</tr>
<tr>
<td></td>
<td>(-0.012,-0.007)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Beta-cell Function measures</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IGI/IR‖</td>
<td>0.008</td>
<td><0.0001</td>
<td>0.12</td>
</tr>
<tr>
<td></td>
<td>(0.005,0.011)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ISSI-2‖</td>
<td>0.005</td>
<td><0.0001</td>
<td>0.15</td>
</tr>
<tr>
<td></td>
<td>(0.003,0.006)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Model 1: adjusted for age, sex, season, ethnicity
† Model 2: adjusted as in model 1 plus supplements, total physical activity, parathyroid hormone
‡ Model 3: adjusted as in model 2 plus BMI
§ R² is the coefficient of determination for the model
‖ Log transformations