Validity of a single-factor model underlying the metabolic syndrome in children: a confirmatory factor analysis.

Vicente Martínez-Vizcaíno, MD,a* Montserrat Solera Martínez, MStat,a Fernando Salcedo Aguilar, MD,b Sandra Serrano Martínez, MD,c Ricardo Franquelo Gutiérrez, MD,c Mairena Sánchez López, Sport Sc,a Pablo Moya Martínez, MD,a Fernando Rodríguez-Artalejo, MDd,e

a Health & Social Research Center, University of Castile-La Mancha, Cuenca, Spain.  
b Family & Community Medicine Teaching Unit, Castile-La Mancha Regional Health Service, Cuenca, Spain.  
c Clinical Analysis Laboratory, Virgen de la Luz Hospital, Cuenca, Spain.  
d Department of Preventive Medicine and Public Health, School of Medicine, Universidad Autónoma de Madrid, Madrid, Spain.  
e CIBER in Epidemiology and Public Health– (CIBERESP), Madrid, Spain.

*Correspondence:  
Dr. Vicente Martínez Vizcaíno  
E-mail: Vicente.Martinez@uclm.es.

Submitted 4 November 2009 and accepted 1 March 2010.

This is an uncopyedited electronic version of an article accepted for publication in Diabetes Care. The American Diabetes Association, publisher of Diabetes Care, is not responsible for any errors or omissions in this version of the manuscript or any version derived from it by third parties. The definitive publisher-authenticated version will be available in a future issue of Diabetes Care in print and online at http://care.diabetesjournals.org.
Objectives: We used confirmatory factor analysis to test whether a single factor might explain the clustering of the metabolic syndrome (MS) components in children.

Research design and methods: We studied 1020 children aged 10-13 years from 20 schools in Cuenca, Spain. The single-factor model included: waist circumference (WC), fasting insulin, triglycerides to HDL-cholesterol ratio (Trigly/HDL-c), and mean arterial pressure (MAP). The standardized scores of the four variables in the model were used to develop a continuous MS index.

Results: Factor loadings were 0.67 for WC, 0.68 for fasting insulin, 0.57 for Trigly/HDL-c, and 0.37 for MAP. The single-factor model also showed a good fit to the data. As compared with the ATP III criteria, the MS index showed a good validity in the diagnosis of MS (area under the ROC curve=0.98; 95% confidence interval 0.96-0.99).

Conclusions: A single underlying factor has acceptable validity to represent MS in children.
Among children, classic cardiovascular risk factors tend to cluster into the metabolic syndrome (MS). Whether the clustering of MS components is due to only one or more determinants is a matter of debate (1). In adults, confirmatory factor analysis (CFA) studies have suggested that there are four factors underlying MS (2–4). In contrast, Pladevall et al. in adults (5), and Li and Ford in US adolescents (6), observed that a single-factor model validly represented the MS.

A single-factor model with a few clinically relevant variables could facilitate diagnosis of MS in children. Accordingly, we used CFA to test a single-factor model representing MS in children. This model includes a single variable for each of the four core components usually accepted in MS: waist circumference (WC) for abdominal obesity, fasting insulin for insulin resistance, triglyceride/high-density lipoprotein cholesterol ratio (Triglyl/HDL-c) for dyslipemia, and mean arterial pressure (MAP) for hypertension. In contrast to Pladevall et al. who used the homeostasis model assessment of insulin resistance (HOMA-IR), we used fasting insulin because it can be a sensitive indicator of insulin resistance even in children without elevated glycemia (7). Furthermore, unlike Li and Ford's model, which only used triglycerides, ours also incorporates HDL-c because it has antithrombotic and antiplatelet effects which influence cardiovascular risk within the MS (8).

RESEARCH DESIGN AND METHODS
The study methods have been reported elsewhere (9). We studied 1020 children aged 10-13 years from 20 schools in Cuenca, Spain. Anthropometry, blood pressure readings and laboratory determinations were performed with standard procedures. Also the CHIP-CE questionnaire was used to assess physical activity (10). The Clinical Research Ethics Committee of the Virgen de la Luz Hospital in Cuenca approved the study protocol.

To examine the construct validity of our model for MS, and of those by Pladevall et al. and by Li and Ford, we calculated the factor loadings of the variables in each model with the AMOS 16.0 software (11). Factor loadings were required to be >0.3 and statistically significant (p<0.05) to accept that any variable was part of the MS construct (12).

The chi-square test is prone to show a significant lack of model fit in studies with large sample size, so that its results cannot be assessed in isolation. Also, the higher the comparative fit index (CFI) and the lower the root mean square residual (SRMR), the better the fit. A model was deemed to have a good fit when the CFI was >0.96 and the SRMR <0.08 (13).

Because the MS components are continuous variables, we estimated the likelihood of having MS with a MS index calculated as the sum of the standardized scores of the four variables comprising our model. We built a receiver operating characteristic (ROC) curve to obtain the sensitivity and specificity of the different cut-points for the MS index in the diagnosis of MS. As gold standard for MS, we used the Adult Treatment Panel III criteria modified for age (14).

RESULTS
Figure 1 depicts the CFA results for the three single-factor MS models in our population. The goodness-of-fit was fairly good for the model by Pladevall et al. (Fig. 1A) and the model by Li and Ford (Fig 1B). Yet for the latter, the factor loading of systolic blood pressure was below 0.3, indicating a poor validity. Our model displayed a somewhat better fit than did that of Pladevall.
et al. and the factor loading of all variables were >0.3, indicating acceptable construct validity (Fig. 1C). Similar results were observed when fasting insulin was replaced by R-HOMA (factor loading: 0.67).

Our model also showed a good fit in each sex and physical activity group. The factor loading of the MS components did not differ between boys and girls (p=0.682) or between active and sedentary children (p=0.187).

The median of the MS index was -0.3 (range -8.34 to 9.64). No difference was observed in the mean MS index between boys (mean= -0.019) and girls (mean= -0.019; p=0.998). In contrast, active children registered a lower MS index (mean= -0.355) than did sedentary children (mean= 0.229; p<0.001), validating the benefit of physical activity on the MS.

The area below the ROC curve was 0.98 (95% confidence interval [CI] 0.96-0.99). The best cut-point for the MS index was 4.2, with a sensitivity of 94.1% (95% CI 91.11-97.13) and a specificity of 93.5% (95% CI 93.46-93.58).

CONCLUSIONS

Our study may lead to improvements in the understanding and diagnosis of MS. First, it confirms that a single factor may underlie the MS construct in children, and suggests that there could be some pattern of common causation for the core components of MS. Second, it provides an MS index that may be useful for identifying MS in children. To assist practicing physicians to obtain immediate results based on crude patient data, we have developed a software application that gives the value of the child's MS index (15).

Our results must be confirmed in other populations and in children of different age. Also, future research should test if inflammatory and procoagulant variables, proposed as components of the MS, should be incorporated into the single-factor model of MS.

ACKNOWLEDGMENTS

We thank the schools, families, and children for their enthusiastic participation in the study. This study was funded mainly by La Consejería de Sanidad de Castilla-La Mancha (grant GC03060-00). Additional funding was obtained from the Instituto de Salud Carlos III, Red de Investigación en Actividades Preventivas y de Promoción de Salud (grant RD06/0018/0038).

Conflicts of interest: None to declare.
REFERENCES


Figure

![Diagram of metabolic syndrome in children with associated values and variables.]

HOMA-IR: homeostasis model assessment of insulin resistance. MAP: mean arterial pressure. SBP: systolic blood pressure.